2019 FINAL REPORT

Virgina \sim Chesapeake bay

 Finfish Ageing ANDPOPULATION ANALYSIS

Hongsheng Liao Cynthia M. Jones,
Jessica Lis Gilmore, Alicia G. Nelson, Adam B Kenyon, and Patrick J. Geer

OCTOBER 13, 2020

2019 Final Report Virginia and Chesapeake Bay Finfish Ageing and Population Analysis

Hongsheng Liao, Cynthia M. Jones, Jessica L. Gilmore, Alicia G. Nelson, Adam B. Kenyon, and Patrick J. Geer

October 13, 2020

Center for Quantitative Fisheries Ecology
Old Dominion University
800 West $46{ }^{\text {Th }}$ Street
Norfolk, VA 23508
Fisheries Management Division
Virginia Marine Resources Commission
380 Fenwick Road
Fort Monroe, VA 23651

TABLE OF CONTENTS

EXECUTIVE SUMMARY vii
ACKNOWLEDGMENTS ix
1 ATLANTIC CROAKER Micropogonias undulatus 1
1.1 INTRODUCTION 2
1.2 METHODS 2
1.2.1 Sample size for ageing 2
1.2.2 Handling of collections 2
1.2.3 Preparation 2
1.2.4 Readings 3
1.2.5 Comparison tests 4
1.3 RESULTS 4
1.3.1 Sample size 4
1.3.2 Reading precision 4
1.3.3 Year class 4
1.3.4 Age-length-key (ALK) 5
2 BLACK DRUM Pogonias cromis 9
2.1 INTRODUCTION 10
2.2 METHODS 10
2.2.1 Handling of collections 10
2.2.2 Preparation 10
2.2.3 Readings 10
2.2.4 Comparison tests 11
2.3 RESULTS 12
2.3.1 Reading precision 12
2.3.2 Year class 12
2.3.3 Age-length-key (ALK) 12
3 BLUEFISH Pomatomus saltatrix 15
3.1 INTRODUCTION 16
3.2 METHODS 16
3.2.1 Sample size for ageing 16
3.2.2 Handling of collections 16
3.2.3 Preparation 16
3.2.4 Readings 17
3.2.5 Comparison tests 18
3.3 RESULTS 19
3.3.1 Sample size 19
3.3.2 Reading precision 19
3.3.3 Year class 19
3.3.4 Age-length-key (ALK) 20
4 COBIA Rachycentron canadum 29
4.1 INTRODUCTION 30
4.2 METHODS 30
4.2.1 Handling of collections 30
4.2.2 Preparation 30
4.2.3 Readings 30
4.2.4 Comparison tests 31
4.3 RESULTS 32
4.3.1 Reading precision 32
4.3.2 Year class 32
4.3.3 Age-length-key (ALK) 32
5 RED DRUM Sciaenops ocellatus 35
5.1 INTRODUCTION 36
5.2 METHODS 36
5.2.1 Handling of collections 36
5.2.2 Preparation 36
5.2.3 Readings 36
5.2.4 Comparison tests 37
5.3 RESULTS 38
5.3.1 Reading precision 38
5.3.2 Year class 38
5.3.3 Age-length-key (ALK) 38
6 SHEEPSHEAD Archosargus probatocephalus 41
6.1 INTRODUCTION 42
6.2 METHODS 42
6.2.1 Handling of collections 42
6.2.2 Preparation 42
6.2.3 Readings 42
6.2.4 Comparison tests 43
6.3 RESULTS 44
6.3.1 Reading precision 44
6.3.2 Year class 44
6.3.3 Age-length-key (ALK) 44
7 ATLANTIC SPADEFISH Chaetodipterus faber 47
7.1 INTRODUCTION 48
7.2 METHODS 48
7.2.1 Sample size for ageing 48
7.2.2 Handling of collections 48
7.2.3 Preparation 48
7.2.4 Readings 49
7.2.5 Comparison tests 50
7.3 RESULTS 50
7.3.1 Sample size 50
7.3.2 Reading precision 50
7.3.3 Year class 50
7.3.4 Age-length-key (ALK) 51
8 SPANISH MACKEREL Scomberomorous maculatus 55
8.1 INTRODUCTION 56
8.2 METHODS 56
8.2.1 Sample size for ageing 56
8.2.2 Handling of collections 56
8.2.3 Preparation 56
8.2.4 Readings 57
8.2.5 Comparison tests 58
8.3 RESULTS 58
8.3.1 Sample size 58
8.3.2 Reading precision 58
8.3.3 Year class 58
8.3.4 Age-length-key (ALK) 58
9 SPOT Leiostomus xanthurus 63
9.1 INTRODUCTION 64
9.2 METHODS 64
9.2.1 Sample size for ageing 64
9.2.2 Handling of collections 64
9.2.3 Preparation 64
9.2.4 Readings 65
9.2.5 Comparison tests 66
9.3 RESULTS 66
9.3.1 Sample size 66
9.3.2 Reading precision 66
9.3.3 Year class 66
9.3.4 Age-length-key (ALK) 67
10 SPOTTED SEATROUT Cynoscion nebulosus 71
10.1 INTRODUCTION 72
10.2 METHODS 72
10.2.1 Sample size for ageing 72
10.2.2 Handling of collections 72
10.2.3 Preparation 72
10.2.4 Readings 73
10.2.5 Comparison tests 74
10.3 RESULTS 74
10.3.1 Sample size 74
10.3.2 Reading precision 74
10.3.3 Year class 74
10.3.4 Age-length-key (ALK) 74
11 STRIPED BASS Morone saxatilis 79
11.1 INTRODUCTION 80
11.2 METHODS 80
11.2.1 Sample size for ageing 80
11.2.2 Handling of collection 80
11.2.3 Preparation 81
Scales 81
Otoliths 81
11.2.4 Readings 81
Scales 83
Otoliths 83
11.2.5 Comparison Tests 84
11.3 RESULTS 84
11.3.1 Sample size 84
11.3.2 Scales 85
11.3.3 Otoliths 86
11.3.4 Comparison of scale and otolith ages 86
11.3.5 Age-Length-Key (ALK) 87
11.4 RECOMMENDATIONS 87
12 SUMMER FLOUNDER Paralichthys dentatus 95
12.1 INTRODUCTION 96
12.2 METHODS 96
12.2.1 Sample size for ageing 96
12.2.2 Handling of collection 96
12.2.3 Preparation 96
Scales 96
Otoliths 97
12.2.4 Readings 97
Scales 99
Otoliths 100
12.2.5 Comparison Tests 100
12.3 RESULTS 100
12.3.1 Sample size 100
12.3.2 Scales 101
12.3.3 Otoliths 102
12.3.4 Comparison of scale and otolith ages 103
12.3.5 Age-Length-Key (ALK) 103
12.4 RECOMMENDATIONS 103
13 TAUTOG Tautoga onitis 111
13.1 INTRODUCTION 112
13.2 METHODS 112
13.2.1 Sample size for ageing 112
13.2.2 Handling of collection 112
13.2.3 Preparation 112
Opercula 112
Otoliths 113
13.2.4 Readings 113
Opercula 114
Otoliths 114
13.2.5 Comparison Tests 115
13.3 RESULTS 115
13.3.1 Sample size 115
13.3.2 Opercula 115
13.3.3 Otoliths 116
13.3.4 Comparison of operculum and otolith ages 116
13.3.5 Age-Length-Key (ALK) 116
14 WEAKFISH Cynoscion regalis 123
14.1 INTRODUCTION 124
14.2 METHODS 124
14.2.1 Sample size for ageing 124
14.2.2 Handling of collections 124
14.2.3 Preparation 124
14.2.4 Readings 125
14.2.5 Comparison tests 126
14.3 RESULTS 126
14.3.1 Sample size 126
14.3.2 Reading precision 126
14.3.3 Year class 126
14.3.4 Age-length-key (ALK) 127
REFERENCES 131

EXECUTIVE SUMMARY

This executive summary briefly summarizes what the Age and Growth Lab achieved in 2019 in terms of the objectives listed in the 2019-2020 proposal.

Objective 1: We propose to continue support of VMRC Age and Growth Laboratory, which is dedicated to providing Virginia fisheries management with reliable age estimates of marine fishes as an ongoing long-term activity. This includes yearly reports of catch-at-age of Virginia's important finfishes that are mandated by law, along with proper protocols to insure accuracy of the age estimates.

This objective is the major task the Age and Growth Lab is funded for, therefore, 14 chapters in the report are about the objective and each chapter is for one of 14 species the lab aged in 2019. We present the ageing results of 14 finfish species collected from commercial and recreational catches made in the Chesapeake Bay and Virginia waters of the Atlantic Ocean, U.S.A. in 2019. All fish were collected by the Virginia Marine Resources Commission's (VMRC) Stock Assessment Program and the Center for Quantitative Fisheries Ecology (CQFE) at Old Dominion University in 2019 and aged in 2020 at the Age and Growth Laboratory of VMRC. We present measures of ageing precision, graphs of year-class distributions, and age-length keys for each species.

Three calcified structures (hard-parts) are used in age determination. Specifically, two calcified structures were used for determining fish ages of the following three species: Striped Bass, Morone saxatilis, ($\mathrm{n}=932$); Summer Flounder, Paralichthys dentatus, $(\mathrm{n}=898)$; and Tautog, Tautoga onitis, ($\mathrm{n}=262$). Scales and otoliths were used to age Striped Bass and Summer Flounder, opercula and otoliths were used to age Tautog. Comparing alternative hard-parts allowed us to assess their usefulness in determining fish age as well as the relative precision of each structure. Ages were determined from otoliths only for the following species: Atlantic Croaker, Micropogonias undulatus, ($\mathrm{n}=227$); Black Drum, Pogonias cromis, ($\mathrm{n}=$ 109); Bluefish, Pomatomus saltatrix, ($\mathrm{n}=399$); Cobia, Rachycentron canadum, ($\mathrm{n}=439$); Red Drum, Sciaenops ocellatus, ($\mathrm{n}=37$); Sheepshead, Archosargus probatocephalus, ($\mathrm{n}=$ 44); Atlantic Spadefish, Chaetodipterus faber, ($\mathrm{n}=315$); Spanish Mackerel, Scomberomorous maculates, ($\mathrm{n}=233$); Spot, Leiostomus xanthurus, $(\mathrm{n}=230)$; Spotted Seatrout, Cynoscion nebulosus, $(\mathrm{n}=258)$; and Weakfish, Cynoscion regalis, $(\mathrm{n}=268)$. In total, we made 8,345 age readings from scales, otoliths and opercula collected during 2019. A summary of the age ranges for all species aged is presented in Table 1.

However, after Virginia state office closures on March 15, 2020 due to the COVID-19 virus, we did not have the second reader to age following species: Atlantic Croaker, Black Drum, Cobia, Red Drum, Sheepshead, Spadefish, Spanish Mackerel, Spot, Spotted Seatrout, Tautog, and Weakfish. Please see the chapter for each of those species in detail.

Objective 2: VMRC will continue to develop sampling methods that are cost effective and representative of landings in the fisheries. This will produce accurate estimates of catch and effort. We have been using two-stage sampling to decide sample sizes for ageing 10 of our 14 species, which have helped to minimize costs on ageing while maximizing precision on estimates of catch-at-age.

In this report, we present sample sizes and coefficient of variation ($C V$) for estimates of age composition for the following species: Atlantic Croaker, Bluefish, Spadefish, Spanish Mackerel, Spot, Spotted Seatrout, Striped Bass, Summer Flounder, Tautog, and Weakfish.

The sample sizes and the $C V$ s enabled us to determine how many fish we needed to age in each length interval and to measure the precision for estimates of major age classes in each species, respectively, enhancing our efficiency and effectiveness on ageing those species.

Objective 3: VMRC will develop routine stock assessments based on age-structured models (such as SVPA, ADAPT, Stock Synthesis, and AD Model Builder, among others where appropriate). Following several years of accumulation of aged-catch data, age-structured stock assessment models will be developed and periodically updated.

The purpose of this projective is to prepare VMRC to make contributions to stock assessment of any species along Atlantic coast when requested by the ASMFC. Currently the Lab Manager, Dr. Hongsheng Liao, is a member of Atlantic Striped Bass Stock Assessment Subcommittee (SAS). However, The SAS just finished the Striped Bass Benchmark Stock Assessment in 2018, therefore, there was no activity from the SAS in 2019. In 2019, Dr. Liao developed \%MSP\%fSPR\%SPR Estimator which is a web-based application (an agestructured model). This model is used to estimate the maximum spawning potential of a fish population given a certain fisheries management policy. VMRC used this model along with other information to set up new regulations on Striped Bass fisheries in 2019.

Objective 4: Develop VMRC Age and Growth Laboratory web pages at VMRC web site to publish protocols, other aids such as pictures of aged otoliths for all species, and other information to assist other states and laboratories in the methods of ageing marine fishes.

Since the lab was transferred from ODU to VMRC in September of 2019, we have transferred some of the lab information from ODU Ageing Laboratory website to VMRC Ageing Laboratory website. At the VMRC Age and Growth Lab website, we published six annual reports by the Age and Growth Lab (including this report) and six web-based applications. Among the six applications, two were developed and published in 2019 (Please see Objective 5 below).

Objective 5: We will continue developing website-based applications (apps) to enhance sharing Virginia fish and their age data with anglers and fisheries biologists in other agencies.

In 2019, we developed two web-based applications and have them posted at VMRC website, Sportfish Donation Data and \%MSP\%fSPR\%SPR Estimator. The first application is designed to encourage Virginia recreational fishermen to donate their fish carcasses to the VMRC data collection program by tracking their donations, and the second application can be used by fisheries management to identify the relationships between management options and stock maximum spawning potential. All six applications developed at the Ageing Lab since 2017 have been playing an important role in maximizing utilization of the VMRC age data among fisheries scientists and the public.

Objective 6: We will continue the publication of our results on accuracy and precision of ageing important marine finfish species, and their effects on stock assessments and fisheries management in scientific literature.

We had been working with the ASMFC and GSMFC on an ageing manual during 2019. The Lab Chief Technician, Ms. Jessica Gilmore, is one of the editors. The manual introduces our hardpart preparation protocols (with links) for all of the species we are ageing here. The manual is expected to be published by early 2021.

Besides above work the Age and Growth Lab did in 2019, to support environmental and wildlife agencies, and charities, we donated more than 732 pounds of dissected fish to the Salvation Army to feed the homeless, and Norfolk Wildlife Response, Inc., a local wildlife rescue agency which is responsible for saving injured animals found by the public.

Table 1: The minimum and maximum ages, number of fish and their hard-parts collected, number of fish aged, and age readings for the 14 finfish species in 2019. The hard-parts and age readings include both scales and otoliths for Striped Bass and Summer Flounder. For Tautog, the hard-parts include opercula, otoliths, and pelvic spines, but the age readings include opercula and otoliths only. Two readers aged Bluefish, Striped Bass, and Summer Flounder but only one reader aged the other species (Please see details in each chapter).

Species	Number of fish collected	Number of hard- parts	Numnber of fish aged	Number of read- ings	Minimun age	Maximum age
Atlantic Croaker	304	304	227	227	0	9
Black Drum	109	109	109	109	1	49
Bluefish	572	572	399	798	0	11
Cobia	439	439	439	439	0	12
Red Drum	37	37	37	37	0	20
Sheepshead	44	44	44	44	3	27
Spadefish	398	398	315	315	1	10
Spanish Mackerel	411	411	233	233	1	7
Spot	299	299	230	230	0	3
Spotted Seatrout	445	445	258	258	0	4
Striped Bass	1,120	1,407	932	2,442	1	25
Summer Flounder	1,064	1,375	898	2,422	1	12
Tautog	262	766	262	523	1	11
Weakfish	346	346	268	268	0	4
Totals	5,850	6,952	4,651	8,345		

(Go back to text)

ACKNOWLEDGMENTS

We thank our Lab Technician Marben Abutin, Destiny Blow, Savanah Davidson, Emily Davis, and Sam Ruth for their technical expertise in preparing otoliths, scales, and opercula for age determination, and our Field Technician Richard Hancock, Myra Thompson, and Chris Williams for their many efforts in biological sampling. They all put in long hours processing "tons" of fish in our lab. We would like to thank the ODU graduate student Kathleen Kirch and VMRC supervisor Ethan Simpson for their help in processing fish and hard-parts whenever we fell short of hands. A specific thanks also goes to VMRC staff Chris Davis, Hunter Smith, and Ethan Simpson for their help on transferring the lab from ODU to VMRC.

CHAPTER 1

ATLANTIC CROAKER
Micropogonias undulatus

1.1 INTRODUCTION

We aged a total of 227 Atlantic Croaker, Micropogonias undulatus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Croaker ages ranged from 0 to 9 years old with an average age of 3 , a standard deviation of 1.9 , and a standard error of 0.13 . Nine age classes (0 to 7 , and 9) were represented, comprising fish of the 2010, and 2012 to 2019 year-classes. The sample was dominated by fish from the year-class of 2017 with 30.8%.

1.2 METHODS

1.2.1 Sample size for ageing

We estimated sample size for ageing Croaker in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{1.1}
\end{equation*}
$$

where A is the sample size for ageing Croaker in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Croaker used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled agelength data of Croaker collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (1.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is
only a $1 \% C V$ reduction for the most major age in catch by ageing an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

1.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

1.2.3 Preparation

Sagittal otoliths, hereafter, referred to as "otoliths", were processed for age determination following the methods described in Barbieri et al. (1993) with a few modifications. The left or right otolith was randomly selected and attached, distal side down, to a glass slide with clear Crystalbond ${ }^{\text {TM }} 509$ adhesive or imbedded in epoxy. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a pencil across the otolith surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ lowspeed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter 2.5"). Thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide,
but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thinsections.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Atlantic Croaker.

1.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Atlantic Croaker. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin
code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Atlantic Croaker otolith annulus formation occurs between April and June (Barbieri et al. 1993, 1994, and modified by CQFE/ODU). A Croaker with three visible annuli could be assigned an age of 3 or 4 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 3 no matter when it is captured. When it is captured after June and before January, it is Age 3 no matter what its margin code is. When it is captured after December and before April and its margin code is not " 1 ", it is Age $4(3+1=$ 4). When it is captured between April and June, it is Age 3 when its margin code is " 2 " but Age $4(3+1=4)$ when its margin code is " 3 " or " 4 ".

Due to discrepancy on identification of the first annulus of Atlantic Croaker among Atlantic states, ASMFC has decided not to count the smallest annulus at the center of the thin-section as the first annulus. Following ASMFC's instruction, we didn't count the smallest annulus at the center as the first annulus in 2019 (Figure 1.1).

After Virginia state office closures on

Figure 1.1: Otolith thin-sections of a 8 yearold Croaker without counting the smallest ring and with the last annulus on the edge of the thin-section

March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 1.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

1.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics anal-
yses were performed in R 3.6.1 (R Core Team 2019).

1.3 RESULTS

1.3.1 Sample size

We estimated a sample size of 400 Atlantic Croaker in 2019, ranging in length intervals from 5 to 18 inches (Table 1.1). This sample size provided a range in ($C V$) for age composition approximately from the smallest $(C V)$ of 8% for Age 5 to the largest ($C V$) of 23% for Age 1. In 2019, we aged 227 of 304 Croaker (The rest of fish were either without otoliths or overcollected for certain length interval(s)) collected by VMRC. We fell short in our overall collections for this optimal length-class sampling estimate by 175 fish. We were short many fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would definitely be influenced significantly. Therefore, precaution should be used when developing ALK using these age data.

1.3.2 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 90% and a $C V$ of 9.2% (test of symmetry: $\chi^{2}=5, d f=3, P=$ $0.1718)$. There was no time series bias for the reader. The reader had an agreement of 100% with ages of fish aged in 2003.

1.3.3 Year class

Of the 227 fish aged with otoliths, 9 age classes (0 to 7 , and 9) were represented (Table 1.2). The average age was 3 years, and the standard deviation and standard error were 1.9 and 0.13 , respectively. Year-class data show that the fishery was comprised of 9 year-classes: fish from the 2010, and 2012 to 2019 year-classes, with fish primar-

Figure 1.2: Year-class frequency distribution for Atlantic Croaker collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.
ily from the year class of 2017 with 30.8%. The ratio of males to females was 1:3.46 in the sample collected (Figure 1.2).

1.3.4 Age-length-key (ALK)

We developed an age-length-key (Table 1.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 1.1: Number of Atlantic Croaker collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$5-5.99$	5	4	4	1
$6-6.99$	5	11	6	0
$7-7.99$	8	22	8	0
$8-8.99$	8	24	8	0
$9-9.99$	21	38	22	0
$10-10.99$	36	62	36	0
$11-11.99$	63	50	50	13
$12-12.99$	102	59	59	43
$13-13.99$	72	34	34	38
$14-14.99$	43	0	0	43
$15-15.99$	19	0	0	19
$16-16.99$	8	0	0	8
$17-17.99$	5	0	0	5
$18-18.99$	5	0	0	5
Totals	400	304	227	175

(Go back to text)

Table 1.2: The number of Atlantic Croaker assigned to each total length-at-age category for 227 fish sampled for otolith age determination in Virginia during 2019.

	Age									
Interval	0	1	2	3	4	5	6	7	9	Totals
$5-5.99$	4	0	0	0	0	0	0	0	0	4
$6-6.99$	5	1	0	0	0	0	0	0	0	6
$7-7.99$	3	2	3	0	0	0	0	0	0	8
$8-8.99$	0	4	2	0	0	1	1	0	0	8
$9-9.99$	0	6	2	2	6	4	1	1	0	22
$10-10.99$	0	0	12	3	2	11	6	1	1	36
$11-11.99$	0	5	20	2	2	7	8	6	0	50
$12-12.99$	0	7	22	16	1	7	3	3	0	59
$13-13.99$	0	13	9	9	2	0	1	0	0	34
Totals	12	38	70	32	13	30	20	11	1	227

(Go back to text)

Table 1.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Atlantic Croaker sampled for age determination in Virginia during 2019.

	Age									
Interval	0	1	2	3	4	5	6	7	9	
$5-5.99$	1	0	0	0	0	0	0	0	0	
$6-6.99$	0.83	0.17	0	0	0	0	0	0	0	
$7-7.99$	0.38	0.25	0.38	0	0	0	0	0	0	
$8-8.99$	0	0.5	0.25	0	0	0.12	0.12	0	0	
$9-9.99$	0	0.27	0.09	0.09	0.27	0.18	0.05	0.05	0	
$10-10.99$	0	0	0.33	0.08	0.06	0.31	0.17	0.03	0.03	
$11-11.99$	0	0.1	0.4	0.04	0.04	0.14	0.16	0.12	0	
$12-12.99$	0	0.12	0.37	0.27	0.02	0.12	0.05	0.05	0	
$13-13.99$	0	0.38	0.26	0.26	0.06	0	0.03	0	0	

(Go back to text)

CHAPTER 2

BLACK DRUM Pogonias cromis

2.1 INTRODUCTION

We aged a total of 109 Black Drum, Pogonias cromis, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Black Drum ages ranged from 1 to 49 years old with an average age of 13.5 , a standard deviation of 10.8 , and a standard error of 1.03 . Thirtytwo age classes (1 to 16,18 to 26,29 to 30,33 to 34,45 , and 48 to 49) were represented, comprising fish of the 1970 to 1971, 1974, 1985 to 1986, 1989 to 1990, 1993 to 2001, and 2003 to 2018 year-classes. The sample was dominated by fish from the year-classes of 2015 and 2016 with 17.4% and 11%, respectively.

2.2 METHODS

2.2.1 Handling of collections

Sagittal otoliths, hereafter, referred to as "otoliths", were received by the Age and Growth Laboratory in labeled coin envelopes. In the lab they were sorted by date of capture, their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

2.2.2 Preparation

Otoliths were processed for age determination following the methods described in Bobko (1991) and Jones and Wells (1998). The left or right sagittal otolith was randomly selected and attached, distal side down, to a glass slide with Crystalbond ${ }^{\mathrm{TM}}$ 509 adhesive or embedded in epoxy. The otoliths were viewed by eye, and when necessary, under a stereo microscope to identify the location of the core, and the position of the core marked using a pencil across the otolith surface. At least one transverse cross-section (hereafter
"thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, three inch diameter, Norton Diamond Grinding Wheels, separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The position of the marked core fell within the 0.5 mm space between the blades, such that the core was included in the removed thinsection. Otolith thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the sections.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Black Drum.

2.2.3 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Black Drum. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in
the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Black Drum otolith annulus formation occurs between May and June (Beckman et al. 1990; Bobko 1991; Jones and Wells 1998). A Black Drum with ten visible annuli could be assigned an age of 10 or 11 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 10 no matter when it is captured. When it is captured after June and before January, it is Age 10 no matter what its margin code is. When it is captured after December and before May and its margin code is not " 1 ", it is Age $11(10+1=$ 11). When it is captured between May and June, it is Age 10 when its margin code is " 2 " but Age $11(10+1=11)$ when its margin code is " 3 " or " 4 ".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 2.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 2.1: Otolith thin-sections of a 3 (Upper panel) and 47 year-old (Lower panel) Black Drum.

2.2.4 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) time-
series bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

2.3 RESULTS

2.3.1 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 100%, There was no time series bias for the reader. The reader had an agreement of 84% with ages of fish aged in 2000 with a $C V$ of 0.39% (test of symmetry: $\chi^{2}=8, d f=8, P=$ $0.4335)$.

2.3.2 Year class

Of the 109 fish aged with otoliths, 32 age classes (1 to 16,18 to 26,29 to 30,33 to 34 , 45 , and 48 to 49) were represented (Table 2.1). The average age was 13.5 years, and the standard deviation and standard error were 10.8 and 1.03 , respectively. Year-class data show that the fishery was comprised of 32 year-classes: fish from the 1970 to 1971, 1974, 1985 to 1986, 1989 to 1990, 1993 to 2001, and 2003 to 2018 year-classes, with fish primarily from the year classes of 2015 and 2016 with 17.4% and 11%, respectively. The ratio of males to females was 1:0.87 in the sample collected (Figure 2.2).

2.3.3 Age-length-key (ALK)

We developed an age-length-key (Table 2.2) that can be used in the conversion of

Figure 2.2: Year-class frequency distribution for Black Drum collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.
numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.
in determination

 100000000000000000000000000010001 $0000000000000000000000000-10000-11$ $00000000000000000000000000-1000-1$ $000000000000000000000000-1000001$ 20 $000000000000000000000000-0000001$ $0000000000000000000000000-1000001$ $000000000000000000000000 \operatorname{HoNoolth}$ 100000000000000000000000000 N 000 N 00000000000000000000000100000001
 $00000000000000000000-0 N-000-100010$ $000000000000000000000-N-1000000 \mathrm{H}$ $000000000000000000-100-1+1000-1000 \infty$茹 $00000000000000000001-10100000000 \mathrm{~m}$ $0000000000000000-000000000000001$ $000000000000000000-1-1-1+1000000010$ $10000000000000000000-1-0000000000 \mathrm{~N}$ $0000000000000000-100000000000001$ $000000000000000-10 N-000000000000 \mathrm{H}$ $00000000000000000-1-000000000000 \mathrm{~N}$ $00000000000000-1-00-100000000000$
$0000000000000-000000000000000-1$ $0000000000000-00-100000000000000 \mathrm{~N}$ $000000000-100 \mathrm{NO} 0000000000000000 \mathrm{~m}$ $0000-N N m 10$ NMN0000000000000000000 $00-N H T N O N 0000000000000000000000 \mathrm{~N}$ - $10-0000000000000000000000000000-1$ |r

Interval	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	18	19	20	21	22	23	24	25	26	29	30	33	34	45	48	49
17-17.99	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18-18.99	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0
19-19.99	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0
20-20.99	0.33	0	0.67	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21-21.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22-22.99	0	0	0.67	0.33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23-23.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24-24.99	0	0	0	1	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25-25.99	0	0	0.29	0.71	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26-26.99	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27-27.99	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28-28.99	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29-29.99	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30-30.99	0	0	0	0	0.67	0.33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31-31.99	0	0	0	0	0	0	0.5	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32-32.99	0	0	0	0	0	0	0	0.75	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33-33.99	0	0	0	0	0	0.25	0	0.25	0	0	0.25	0	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34-34.99	0	0	0	0	0	0	0	0	0.33	0.67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
35-35.99	0	0	0	0	0	0	0	0	0.25	0.25	0	0	0.25	0	0	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
36-36.99	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0.2	0	0.2	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
37-37.99	0	0	0	0	0	0	0	0	0	0	0	0.25	0.25	0	0.25	0	0	0	0.25	0	0	0	0	0	0	0	0	0	0	0	0	0
38-38.99	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0.2	0.2	0.2	0	0.2	0	0	0	0	0	0	0	0	0	0	0	0
39-39.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.14	0	0.14	0.29	0.29	0.14	0	0	0	0	0	0	0	0	0	0	0	0
40-40.99	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0.1	0.4	0.1	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	0
41-41.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0.2	0	0	0.2	0	0.2	0	0.2	0	0	0	0	0
42-42.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0	0.25	0.25	0	0	0	0	0.25	0	0	0
43-43.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.67	0	0	0	0	0	0.33	0	0	0	0
44-44.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0.2	0	0	0	0.4	0	0	0	0	0	0	0.2	0	0
45-45.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.33	0	0	0	0	0.33	0.33
48-48.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
49-49.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0		0	0	0

CHAPTER 3

BLUEFISH Pomatomus saltatrix

3.1 INTRODUCTION

We aged a total of 399 Bluefish, Pomatomus saltatrix, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Bluefish ages ranged from 0 to 11 years old with an average age of 2.9 , a standard deviation of 2 , and a standard error of 0.1 . Twelve age classes (0 to 11) were represented, comprising fish of the 2008 to 2019 year-classes. The sample was dominated by fish from the year-classes of 2015,2017 , and 2018 with $16.5 \%, 30.6 \%$, and 23.1%, respectively.

3.2 METHODS

3.2.1 Sample size for ageing

We estimated sample size for ageing Bluefish in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{3.1}
\end{equation*}
$$

where A is the sample size for ageing Bluefish in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Bluefish used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled agelength data of Bluefish collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (3.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is
only a $1 \% C V$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019. Based on VMRC's request in 2010, we used 1 -cm length interval for Bluefish, which differed from other species (1-inch).

3.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

3.2.3 Preparation

We used our thin-section and bake technique to process Bluefish sagittal otoliths (hereafter, referred to as "otoliths") for age determination (Robillard et al. 2009). Otolith preparation began by randomly selecting either the right or left otolith. Each whole otolith was placed in a ceramic "Coors" Spot plate well and baked in a Thermolyne 1400 furnace at $400^{\circ} \mathrm{C}$. Baking time was dependent on the otolith's size and gauged by color, with a light caramel color desired. Once a suitable color was achieved the baked otolith was embedded in epoxy resin with its distal surface orientated downwards. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core. Then, the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a

Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter 2.5"). The otolith was positioned so the blades straddled each side of the otolith focus. It was crucial that this cut be perpendicular to the long axis of the otolith. Failure to do so resulted in broad and distorted winter growth zones. A proper cut resulted in annuli that were clearly defined and delineated. Once cut, thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thinsection.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Bluefish.

3.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Bluefish. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third
of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Bluefish otolith annulus formation occurs between March and June (Robillard et al. 2009). A Bluefish with three visible annuli could be assigned an age of 3 or 4 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 3 no matter when it is captured. When it is captured after June and before January, it is Age 3 no matter what its margin code is. When it is captured after December and before March and its margin code is not " 1 ", it is Age 4 $(3+1=4)$. When it is captured between March and June, it is Age 3 when its margin code is " 2 " but Age $4(3+1=4)$ when
its margin code is " 3 " or " 4 ".
All thin-sections were aged by two different readers using a Nikon SMZ1000 stereo microscope under transmitted light and darkfield polarization at between 8 and 20 times magnification (Figure 3.1). Each reader aged all of the otolith samples.

Figure 3.1: Otolith thin-section of a 5 year-old Bluefish with the last annulus on the edge of the thin-section

If an otolith was properly sectioned, the sulcal groove came to a sharp point within the middle of the focus. Typically the first year's annulus was found by locating the focus of the otolith, which was characterized as a visually distinct dark, oblong region found in the center of the otolith. The first year's annulus had the highest visibility proximal to the focus along the edge of the sulcal groove. Once located, the first year's annulus was followed outward from the sulcal groove towards the dorsal perimeter of the otolith. Often, but not always, the first year was associated with a very distinct crenellation on the dorsal surface and a prominent protrusion on the ventral surface. Both of these landmarks had a tendency to become less prominent in older fish.

Even with the bake and thin-section technique, interpretation of the growth zones from the otoliths of young Bluefish was difficult. Rapid growth within the first year of life prevents a sharp delineation between opaque and translucent zones. When the exact location of the first year was not clearly evident, and the otolith had been
sectioned accurately, a combination of surface landscape (1st year crenellation) and the position of the second annuli were used to help determine the position of the first annulus.

What appeared to be "double annuli" were occasionally observed in Bluefish 4-7 years of age and older. This double-annulus formation was typically characterized by distinct and separate annuli in extremely close proximity to each other. We do not know if the formation of these double annuli were two separate annuli, or in fact only one, but they seemed to occur during times of reduced growth after maturation. "Double annuli" were considered to be one annulus when both marks joined to form a central origin (the origin being the sulcal groove and the outer peripheral edge of the otolith). If these annuli did not meet to form a central origin they were considered two distinct annuli, and were counted as such.

All samples were aged in chronological order, based on collection date, without knowledge of previously estimated ages or the specimen lengths. When the readers' ages agreed, that age was assigned to the fish. When the two readers disagreed, both readers sat down together and re-aged the fish, again without any knowledge of previously estimated ages or lengths, and assigned a final age to the fish. When the readers were unable to agree on a final age, the fish was excluded from further analysis.

3.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, for the following comparisons: 1) between the two readers in the current year, 2) within each reader in the current year, and 3) time-series bias between the current and
previous years within each reader. The readings from the entire sample for the current year were used to examine the difference between two readers. A random subsample of 50 fish from the current year was selected for second readings to examine the difference within a reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within each reader. A figure of 1:1 equivalence was used to illustrate those differences (Campana et al. 1995). All statistics analyses were performed in R 3.6 .1 (R Core Team 2019).

3.3 RESULTS

3.3.1 Sample size

We estimated a sample size of 458 Bluefish in 2019, ranging in length intervals from 14 to 98 centimeters (Table 3.1). This sample size provided a range in $(C V)$ for age composition approximately from the smallest $(C V)$ of 6% for Age 1 to the largest ($C V$) of 23% for Age 8. In 2019, we randomly selected and aged 399 fish from 572 Bluefish collected by VMRC. We fell short in our over-all collections for this optimal lengthclass sampling estimate by 97 fish. We were short only a few fish from the major length intervals (the interval requires more than 5 fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

3.3.2 Reading precision

Both readers had high self-precision. Specifically, there was no significant difference between the first and second readings for Reader 1 with an agreement of 88% and a $C V$ of 2.9% (test of symmetry: $\chi^{2}=4, d f$ $=4, P=0.406$), and there was no significant difference between the first and second readings for Reader 2 with an agreement of 90% and a $C V$ of 2.57% (test of symmetry: $\left.\chi^{2}=5, d f=3, P=0.1718\right)$. There was ev-
idence of systematic disagreement between Reader 1 and Reader 2 with an agreement of 87.22% and a $C V$ of 3.4% (test of symmetry: $\chi^{2}=36.34, d f=12, P=0.0003$) (Figure 3.2).

Figure 3.2: Between-reader comparison of otolith age estimates for Bluefish collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

There was no time-series bias for either reader. Reader 1 had an agreement of 92% with ages of fish aged in 2000 with a $C V$ of 4.46% (test of symmetry: $\chi^{2}=4, d f=4, P$ $=0.406$), and Reader 2 had an agreement of 98% with a $C V$ of 0.94% (test of symmetry: $\left.\chi^{2}=1, d f=1, P=0.3173\right)$.

3.3.3 Year class

Of the 399 fish aged with otoliths, 12 age classes (0 to 11) were represented (Table 3.2). The average age was 2.9 years, and the standard deviation and standard error were 2 and 0.1, respectively. Yearclass data show that the fishery was comprised of 12 year-classes: fish from the 2008 to 2019 year-classes, with fish primarily from the year classes of 2015, 2017, and 2018 with $16.5 \%, 30.6 \%$, and 23.1%, respectively. The ratio of males to females was $1: 2.16$ in the sample collected (Figure 3.3).

Figure 3.3: Year-class frequency distribution for Bluefish collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

3.3.4 Age-length-key

 (ALK)We developed an age-length-key (Table 3.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length cm intervals.

Table 3.1: Number of Bluefish collected and aged in each 1-cm length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.
(Go back to text)

Interval	Target	Collected	Aged	Need
$14-14.99$	5	0	0	5
$15-15.99$	5	0	0	5
$16-16.99$	5	0	0	5
$17-17.99$	5	0	0	5
$18-18.99$	5	0	0	5
$19-19.99$	5	1	1	4
$20-20.99$	5	2	2	3
$21-21.99$	5	3	3	2
$22-22.99$	5	5	5	0
$23-23.99$	5	2	2	3
$24-24.99$	5	13	6	0
$25-25.99$	5	9	6	0
$26-26.99$	5	13	6	0
$27-27.99$	5	12	6	0
$28-28.99$	5	12	6	0
$29-29.99$	5	9	6	0
$30-30.99$	6	13	6	0
$31-31.99$	5	11	7	0
$32-32.99$	6	8	6	0
$33-33.99$	5	15	6	0
$34-34.99$	6	11	6	0
$35-35.99$	6	10	6	0
$36-36.99$	7	14	8	0
$37-37.99$	7	9	8	0
$38-38.99$	7	10	8	0
$39-39.99$	8	11	8	0
$40-40.99$	8	5	5	3
$41-41.99$	7	15	8	0
$42-42.99$	7	12	8	0
$43-43.99$	7	21	8	0
$44-44.99$	6	7	6	0
$45-45.99$	8	14	8	0
$46-46.99$	6	6	6	0
$47-47.99$	7	6	6	0
$48-48.99$	6	15	0	0
$49-49.99$	5	5	0	0
$50-50.99$	5	5	0	0
$51-51.99$	5	52.99	5	53.99

(To continue)

Table 3.1 (Continued)

Interval	Target	Collected	Aged	Need
$54-54.99$	5	10	6	0
$55-55.99$	5	9	6	0
$56-56.99$	5	5	5	0
$57-57.99$	5	12	6	0
$58-58.99$	5	8	6	0
$59-59.99$	6	9	6	0
$60-60.99$	5	10	6	0
$61-61.99$	6	6	6	0
$62-62.99$	5	7	6	0
$63-63.99$	5	8	6	0
$64-64.99$	5	5	5	0
$65-65.99$	5	9	6	0
$66-66.99$	5	3	3	2
$67-67.99$	5	4	4	1
$68-68.99$	5	3	3	2
$69-69.99$	5	6	6	0
$70-70.99$	5	7	6	0
$71-71.99$	5	6	6	0
$72-72.99$	5	4	4	1
$73-73.99$	5	3	3	2
$74-74.99$	5	5	5	0
$75-75.99$	5	1	1	4
$76-76.99$	5	5	5	0
$77-77.99$	5	9	6	0
$78-78.99$	5	5	5	0
$79-79.99$	5	7	6	0
$80-80.99$	5	6	6	0
$81-81.99$	6	4	4	2
$82-82.99$	5	8	6	0
$83-83.99$	5	7	6	0
$84-84.99$	5	5	5	0
$85-85.99$	5	6	6	0
$86-86.99$	5	7	6	0
$87-87.99$	5	5	5	0
$88-88.99$	5	2	2	3
$89-89.99$	5	3	3	2
$90-90.99$	5	1	1	4
$91-91.99$	5	4	4	1
$92-92.99$	5	1	1	4
$93-93.99$	5	1	1	4
$94-94.99$	5	1	1	4
$95-95.99$	5	0	0	5
$96-96.99$	5	0	0	5
$97-97.99$	5	0	0	5
$98-98.99$	5	0	0	5
70				
-9				

(To continue)

Table 3.1 (Continued)

Interval	Target	Collected	Aged	Need
Totals	458	572	399	97

(Go back to text)
Table 3.2: The number of Bluefish assigned to each total length (cm)-at-age category for 399 fish sampled for otolith age determination in Virginia during 2019.

Age													
Interval	0	1	2	3	4	5	6	7	8	9	10	11	Totals
19-19.99	0	1	0	0	0	0	0	0	0	0	0	0	1
20-20.99	1	1	0	0	0	0	0	0	0	0	0	0	2
21-21.99	2	1	0	0	0	0	0	0	0	0	0	0	3
22-22.99	2	3	0	0	0	0	0	0	0	0	0	0	5
23-23.99	2	0	0	0	0	0	0	0	0	0	0	0	2
24-24.99	3	3	0	0	0	0	0	0	0	0	0	0	6
25-25.99	3	3	0	0	0	0	0	0	0	0	0	0	6
26-26.99	2	4	0	0	0	0	0	0	0	0	0	0	6
27-27.99	0	6	0	0	0	0	0	0	0	0	0	0	6
28-28.99	0	6	0	0	0	0	0	0	0	0	0	0	6
29-29.99	0	6	0	0	0	0	0	0	0	0	0	0	6
30-30.99	0	6	0	0	0	0	0	0	0	0	0	0	6
31-31.99	0	7	0	0	0	0	0	0	0	0	0	0	7
32-32.99	0	6	0	0	0	0	0	0	0	0	0	0	6
33-33.99	0	3	3	0	0	0	0	0	0	0	0	0	6
34-34.99	0	4	2	0	0	0	0	0	0	0	0	0	6
35-35.99	0	3	3	0	0	0	0	0	0	0	0	0	6
36-36.99	0	4	4	0	0	0	0	0	0	0	0	0	8
37-37.99	0	4	4	0	0	0	0	0	0	0	0	0	8
38-38.99	0	4	4	0	0	0	0	0	0	0	0	0	8
39-39.99	0	3	5	0	0	0	0	0	0	0	0	0	8
40-40.99	0	1	4	0	0	0	0	0	0	0	0	0	5
41-41.99	0	2	6	0	0	0	0	0	0	0	0	0	8
42-42.99	0	3	5	0	0	0	0	0	0	0	0	0	8
43-43.99	0	2	6	0	0	0	0	0	0	0	0	0	8
44-44.99	0	0	6	0	0	0	0	0	0	0	0	0	6
45-45.99	0	1	7	0	0	0	0	0	0	0	0	0	8
46-46.99	0	2	4	0	0	0	0	0	0	0	0	0	6
47-47.99	0	0	8	0	0	0	0	0	0	0	0	0	8
48-48.99	0	1	5	0	0	0	0	0	0	0	0	0	6
49-49.99	0	0	5	1	0	0	0	0	0	0	0	0	6
50-50.99	0	0	5	1	0	0	0	0	0	0	0	0	6
51-51.99	0	2	4	0	0	0	0	0	0	0	0	0	6
52-52.99	0	0	4	2	0	0	0	0	0	0	0	0	6
53-53.99	0	0	2	2	0	0	0	0	0	0	0	0	4
54-54.99	0	0	4	1	1	0	0	0	0	0	0	0	6
55-55.99	0	0	3	3	0	0	0	0	0	0	0	0	6
56-56.99	0	0	3	1	1	0	0	0	0	0	0	0	5
57-57.99	0	0	3	3	0	0	0	0	0	0	0	0	6
58-58.99	0	0	3	2	1	0	0	0	0	0	0	0	6
59-59.99	0	0	3	3	0	0	0	0	0	0	0	0	6

(To continue)

Table 3.2 (Continued)

	Age												
Interval	0	1	2	3	4	5	6	7	8	9	10	11	Totals
$60-60.99$	0	0	2	1	3	0	0	0	0	0	0	0	6
$61-61.99$	0	0	1	2	3	0	0	0	0	0	0	0	6
$62-62.99$	0	0	1	2	3	0	0	0	0	0	0	0	6
$63-63.99$	0	0	2	0	4	0	0	0	0	0	0	0	6
$64-64.99$	0	0	0	0	4	0	1	0	0	0	0	0	5
$65-65.99$	0	0	1	3	2	0	0	0	0	0	0	0	6
$66-66.99$	0	0	0	1	2	0	0	0	0	0	0	0	3
$67-67.99$	0	0	0	1	2	1	0	0	0	0	0	0	4
$68-68.99$	0	0	0	0	3	0	0	0	0	0	0	0	3
$69-69.99$	0	0	0	0	5	1	0	0	0	0	0	0	6
$70-70.99$	0	0	0	0	6	0	0	0	0	0	0	0	6
$71-71.99$	0	0	0	0	4	2	0	0	0	0	0	0	6
$72-72.99$	0	0	0	0	3	0	1	0	0	0	0	0	4
$73-73.99$	0	0	0	0	3	0	0	0	0	0	0	0	3
$74-74.99$	0	0	0	0	3	1	1	0	0	0	0	0	5
$75-75.99$	0	0	0	0	1	0	0	0	0	0	0	0	1
$76-76.99$	0	0	0	0	4	1	0	0	0	0	0	0	5
$77-77.99$	0	0	0	1	1	2	1	0	1	0	0	0	6
$78-78.99$	0	0	0	0	1	2	1	1	0	0	0	0	5
$79-79.99$	0	0	0	0	1	3	1	1	0	0	0	0	6
$80-80.99$	0	0	0	0	0	1	4	0	1	0	0	0	6
$81-81.99$	0	0	0	0	0	1	2	1	0	0	0	0	4
$82-82.99$	0	0	0	1	2	1	1	1	0	0	0	0	6
$83-83.99$	0	0	0	0	0	3	3	0	0	0	0	0	6
$84-84.99$	0	0	0	0	2	1	1	0	0	1	0	0	5
$85-85.99$	0	0	0	0	0	3	2	0	1	0	0	0	6
$86-86.99$	0	0	0	0	0	2	1	2	1	0	0	0	6
$87-87.99$	0	0	0	0	0	0	2	1	1	0	0	1	5
$88-88.99$	0	0	0	0	0	0	1	0	0	1	0	0	2
$89-89.99$	0	0	0	0	0	0	2	1	0	0	0	0	3
$90-90.99$	0	0	0	0	0	0	0	0	1	0	0	0	1
$91-91.99$	0	0	0	0	0	0	1	1	1	0	1	0	4
$92-92.99$	0	0	0	0	1	0	0	0	0	0	0	0	1
$93-93.99$	0	0	0	0	0	0	0	1	0	0	0	0	1
$94-94.99$	0	0	0	0	0	0	0	0	0	0	1	0	1
Totals	15	92	122	31	66	25	26	10	7	2	2	1	399

(Go back to text)
Table 3.3: Age-Length key, as proportion-at-age in each 1-cm length interval, based on otolith ages for Bluefish sampled for age determination in Virginia during 2019.

Age												
Interval	0	1	2	3	4	5	6	7	8	9	10	11
19-19.99	0	1	0	0	0	0	0	0	0	0	0	0
20-20.99	0.5	0.5	0	0	0	0	0	0	0	0	0	0
21-21.99	0.67	0.33	0	0	0	0	0	0	0	0	0	0
22-22.99	0.4	0.6	0	0	0	0	0	0	0	0	0	0
23-23.99	1	0	0	0	0	0	0	0	0	0	0	0
24-24.99	0.5	0.5	0	0	0	0	0	0	0	0	0	0
25-25.99	0.5	0.5	0	0	0	0	0	0	0	0	0	0
26-26.99	0.33	0.67	0	0	0	0	0	0	0	0	0	0
27-27.99	0	1	0	0	0	0	0	0	0	0	0	0
28-28.99	0	1	0	0	0	0	0	0	0	0	0	0
29-29.99	0	1	0	0	0	0	0	0	0	0	0	0
30-30.99	0	1	0	0	0	0	0	0	0	0	0	0
31-31.99	0	1	0	0	0	0	0	0	0	0	0	0
32-32.99	0	1	0	0	0	0	0	0	0	0	0	0
33-33.99	0	0.5	0.5	0	0	0	0	0	0	0	0	0
34-34.99	0	0.67	0.33	0	0	0	0	0	0	0	0	0
35-35.99	0	0.5	0.5	0	0	0	0	0	0	0	0	0
36-36.99	0	0.5	0.5	0	0	0	0	0	0	0	0	0
37-37.99	0	0.5	0.5	0	0	0	0	0	0	0	0	0
38-38.99	0	0.5	0.5	0	0	0	0	0	0	0	0	0
39-39.99	0	0.38	0.62	0	0	0	0	0	0	0	0	0
40-40.99	0	0.2	0.8	0	0	0	0	0	0	0	0	0
41-41.99	0	0.25	0.75	0	0	0	0	0	0	0	0	0
42-42.99	0	0.38	0.62	0	0	0	0	0	0	0	0	0
43-43.99	0	0.25	0.75	0	0	0	0	0	0	0	0	0
44-44.99	0	0	1	0	0	0	0	0	0	0	0	0
45-45.99	0	0.12	0.88	0	0	0	0	0	0	0	0	0
46-46.99	0	0.33	0.67	0	0	0	0	0	0	0	0	0
47-47.99	0	0	1	0	0	0	0	0	0	0	0	0
48-48.99	0	0.17	0.83	0	0	0	0	0	0	0	0	0
49-49.99	0	0	0.83	0.17	0	0	0	0	0	0	0	0
50-50.99	0	0	0.83	0.17	0	0	0	0	0	0	0	0
51-51.99	0	0.33	0.67	0	0	0	0	0	0	0	0	0
52-52.99	0	0	0.67	0.33	0	0	0	0	0	0	0	0
53-53.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0
54-54.99	0	0	0.67	0.17	0.17	0	0	0	0	0	0	0
55-55.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0
56-56.99	0	0	0.6	0.2	0.2	0	0	0	0	0	0	0
57-57.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0
58-58.99	0	0	0.5	0.33	0.17	0	0	0	0	0	0	0
59-59.99	0	0	0.5	0.5	0	0	0	0	0	0	0	0

(To continue)

Table 3.3 (Continued)

	Age											
Interval	0	1	2	3	4	5	6	7	8	9	10	11
$60-60.99$	0	0	0.33	0.17	0.5	0	0	0	0	0	0	0
$61-61.99$	0	0	0.17	0.33	0.5	0	0	0	0	0	0	0
$62-62.99$	0	0	0.17	0.33	0.5	0	0	0	0	0	0	0
$63-63.99$	0	0	0.33	0	0.67	0	0	0	0	0	0	0
$64-64.99$	0	0	0	0	0.8	0	0.2	0	0	0	0	0
$65-65.99$	0	0	0.17	0.5	0.33	0	0	0	0	0	0	0
$66-66.99$	0	0	0	0.33	0.67	0	0	0	0	0	0	0
$67-67.99$	0	0	0	0.25	0.5	0.25	0	0	0	0	0	0
$68-68.99$	0	0	0	0	1	0	0	0	0	0	0	0
$69-69.99$	0	0	0	0	0.83	0.17	0	0	0	0	0	0
$70-70.99$	0	0	0	0	1	0	0	0	0	0	0	0
$71-71.99$	0	0	0	0	0.67	0.33	0	0	0	0	0	0
$72-72.99$	0	0	0	0	0.75	0	0.25	0	0	0	0	0
$73-73.99$	0	0	0	0	1	0	0	0	0	0	0	0
$74-74.99$	0	0	0	0	0.6	0.2	0.2	0	0	0	0	0
$75-75.99$	0	0	0	0	1	0	0	0	0	0	0	0
$76-76.99$	0	0	0	0	0.8	0.2	0	0	0	0	0	0
$77-77.99$	0	0	0	0.17	0.17	0.33	0.17	0	0.17	0	0	0
$78-78.99$	0	0	0	0	0.2	0.4	0.2	0.2	0	0	0	0
$79-79.99$	0	0	0	0	0.17	0.5	0.17	0.17	0	0	0	0
$80-80.99$	0	0	0	0	0	0.17	0.67	0	0.17	0	0	0
$81-81.99$	0	0	0	0	0	0.25	0.5	0.25	0	0	0	0
$82-82.99$	0	0	0	0.17	0.33	0.17	0.17	0.17	0	0	0	0
$83-83.99$	0	0	0	0	0	0.5	0.5	0	0	0	0	0
$84-84.99$	0	0	0	0	0.4	0.2	0.2	0	0	0.2	0	0
$85-85.99$	0	0	0	0	0	0.5	0.33	0	0.17	0	0	0
$86-86.99$	0	0	0	0	0	0.33	0.17	0.33	0.17	0	0	0
$87-87.99$	0	0	0	0	0	0	0.4	0.2	0.2	0	0	0.2
$88-88.99$	0	0	0	0	0	0	0.5	0	0	0.5	0	0
$89-89.99$	0	0	0	0	0	0	0.67	0.33	0	0	0	0
$90-90.99$	0	0	0	0	0	0	0	0	1	0	0	0
$91-91.99$	0	0	0	0	0	0	0.25	0.25	0.25	0	0.25	0
$92-92.99$	0	0	0	0	1	0	0	0	0	0	0	0
$93-93.99$	0	0	0	0	0	0	0	1	0	0	0	0
$94-94.99$	0	0	0	0	0	0	0	0	0	0	1	0

CHAPTER 4

COBIA Rachycentron canadum

4.1 INTRODUCTION

We aged a total of 439 Cobia, Rachycentron canadum, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Cobia ages ranged from 0 to 12 years old with an average age of 4.5 , a standard deviation of 1.6 , and a standard error of 0.08 . Eleven age classes (0,2 to 10 , and 12) were represented, comprising fish of the 2007, 2009 to 2017, and 2019 year-classes. The sample was dominated by fish from the year-classes of 2012, 2014, 2015 , and 2016 with $12.5 \%, 15 \%$, 41.9%, and 23.5%, respectively.

4.2 METHODS

4.2.1 Handling of collections

Sagittal otoliths, hereafter, referred to as "otoliths", were received by the Age and Growth Laboratory in labeled coin envelopes and were sorted by date of capture, their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored inside of protective Axygen 2 ml micro-tubes within their original labeled coin envelopes.

4.2.2 Preparation

Otoliths were processed for age determination. The left or right otolith was randomly selected and embedded, distal side down, in epoxy resin and allowed to harden overnight. The otoliths were viewed by eye, and when necessary, under a stereo microscope to identify the location of the core, and the position of the core marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ lowspeed saw equipped with two, three inch di-
ameter, Norton Diamond Grinding Wheels, separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The position of the marked core fell within the 0.5 mm space between the blades, such that the core was included in the removed thin section. Otolith thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the section.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Cobia.

4.2.3 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Cobia. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern

Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Cobia otolith annulus formation occurs between June and July (Richards 1967 and modified by CQFE/ODU). A Cobia with five visible annuli could be assigned an age of 5 or 6 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 5 no matter when it is captured. When it is captured after July and before January, it is Age 5 no matter what its margin code is. When it is captured after December and before June and its margin code is not " 1 ", it is Age $6(5+1=6)$. When it is captured between June and July, it is Age 5 when its margin code is " 2 " but Age $6(5+1=6)$ when its margin code is " 3 " or " 4 ".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from age-
ing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 4.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 4.1: Otolith thin-section of a 4 year-old Cobia.

4.2.4 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

4.3 RESULTS

4.3.1 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 98% and a $C V$ of 0.31% (test of symmetry: $\chi^{2}=1, d f=1$, $P=0.3173)$.

There was no time series bias for the reader. The reader had an agreement of 90% with ages of fish aged in 2000 with a $C V$ of 1.02% (test of symmetry: $\chi^{2}=5, d f=5, P=$ 0.4159).

4.3.2 Year class

Of the 439 fish aged with otoliths, 11 age classes (0,2 to 10 , and 12) were represented (Table 4.1). The average age was 4.5 years, and the standard deviation and standard error were 1.6 and 0.08 , respectively. Year-class data show that the fishery was comprised of 11 year-classes: fish from the 2007, 2009 to 2017, and 2019 year-classes, with fish primarily from the year classes of $2012,2014,2015$, and 2016 with 12.5%, $15 \%, 41.9 \%$, and 23.5%, respectively. The ratio of males to females was 1:1.48 in the sample collected (Figure 4.2).

Figure 4.2: Year-class frequency distribution for Cobia collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

4.3.3 Age-length-key
 (ALK)

We developed an age-length-key (Table 4.2) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 4.1: The number of Cobia assigned to each total length (inch)-at-age category for 439 fish sampled for otolith age determination in Virginia during 2019.

	Age											
Interval	0	2	3	4	5	6	7	8	9	10	12	Totals
$13-13.99$	1	0	0	0	0	0	0	0	0	0	0	1
$36-36.99$	0	0	1	0	0	0	0	0	0	0	0	1
$37-37.99$	0	1	6	3	1	0	0	0	0	0	0	11
$38-38.99$	0	0	12	9	2	0	0	0	0	0	0	23
$39-39.99$	0	0	22	17	7	1	1	0	0	0	0	48
$40-40.99$	0	0	26	28	5	1	3	0	0	0	0	63
$41-41.99$	0	1	17	9	9	1	8	1	0	0	0	46
$42-42.99$	0	1	6	15	9	0	12	1	0	0	0	44
$43-43.99$	0	0	8	19	7	0	7	2	0	0	0	43
$44-44.99$	0	0	2	16	2	1	7	0	1	0	0	29
$45-45.99$	0	0	1	24	5	1	3	0	1	0	0	35
$46-46.99$	0	0	1	11	4	0	1	1	2	0	1	21
$47-47.99$	0	0	0	18	3	1	1	0	0	0	0	23
$48-48.99$	0	0	0	8	2	0	2	0	2	0	0	14
$49-49.99$	0	0	0	4	5	0	0	1	0	0	0	10
$50-50.99$	0	0	1	2	1	0	1	0	0	0	1	6
$51-51.99$	0	0	0	1	3	0	1	0	0	0	0	5
$52-52.99$	0	0	0	0	1	0	4	0	1	0	0	6
$53-53.99$	0	0	0	0	0	0	2	1	0	0	0	3
$55-55.99$	0	0	0	0	0	0	1	0	1	0	0	2
$56-56.99$	0	0	0	0	0	0	0	0	1	0	0	1
$57-57.99$	0	0	0	0	0	0	0	2	0	0	0	2
$59-59.99$	0	0	0	0	0	0	1	0	0	0	0	1
$62-62.99$	0	0	0	0	0	0	0	0	0	1	0	1
Totals	1	3	103	184	66	6	55	9	9	1	2	439

(Go back to text)

Table 4.2: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Cobia sampled for age determination in Virginia during 2019.

			Age								
Interval	0	2	3	4	5	6	7	8	9	10	12
$13-13.99$	1	0	0	0	0	0	0	0	0	0	0
$36-36.99$	0	0	1	0	0	0	0	0	0	0	0
$37-37.99$	0	0.09	0.55	0.27	0.09	0	0	0	0	0	0
$38-38.99$	0	0	0.52	0.39	0.09	0	0	0	0	0	0
$39-39.99$	0	0	0.46	0.35	0.15	0.02	0.02	0	0	0	0
$40-40.99$	0	0	0.41	0.44	0.08	0.02	0.05	0	0	0	0
$41-41.99$	0	0.02	0.37	0.2	0.2	0.02	0.17	0.02	0	0	0
$42-42.99$	0	0.02	0.14	0.34	0.2	0	0.27	0.02	0	0	0
$43-43.99$	0	0	0.19	0.44	0.16	0	0.16	0.05	0	0	0
$44-44.99$	0	0	0.07	0.55	0.07	0.03	0.24	0	0.03	0	0
$45-45.99$	0	0	0.03	0.69	0.14	0.03	0.09	0	0.03	0	0
$46-46.99$	0	0	0.05	0.52	0.19	0	0.05	0.05	0.1	0	0.05
$47-47.99$	0	0	0	0.78	0.13	0.04	0.04	0	0	0	0
$48-48.99$	0	0	0	0.57	0.14	0	0.14	0	0.14	0	0
$49-49.99$	0	0	0	0.4	0.5	0	0	0.1	0	0	0
$50-50.99$	0	0	0.17	0.33	0.17	0	0.17	0	0	0	0.17
$51-51.99$	0	0	0	0.2	0.6	0	0.2	0	0	0	0
$52-52.99$	0	0	0	0	0.17	0	0.67	0	0.17	0	0
$53-53.99$	0	0	0	0	0	0	0.67	0.33	0	0	0
$55-55.99$	0	0	0	0	0	0	0.5	0	0.5	0	0
$56-56.99$	0	0	0	0	0	0	0	0	1	0	0
$57-57.99$	0	0	0	0	0	0	0	1	0	0	0
$59-59.99$	0	0	0	0	0	0	1	0	0	0	0
$62-62.99$	0	0	0	0	0	0	0	0	0	1	0

(Go back to text)

CHAPTER 5

RED DRUM Sciaenops ocellatus

5.1 INTRODUCTION

We aged a total of 37 Red Drum, Sciaenops ocellatus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Red Drum ages ranged from 0 to 20 years old with an average age of 0.9 , a standard deviation of 3.9 , and a standard error of 0.64 . Four age classes (0 to 1,13 , and 20) were represented, comprising fish of the 1999, 2006, and 2018 to 2019 year-classes. The sample was dominated by fish from the year-class of 2019 with 91.9%.

5.2 METHODS

5.2.1 Handling of collections

Sagittal otoliths, hereafter, referred to as "otoliths", were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

5.2.2 Preparation

Otoliths were processed for age determination following the methods described in Ross et al. (1995) and modified by Jones and Wells (1998) for Red Drum. The left or right sagittal otolith was randomly selected and attached, distal side down, to a glass slide with Crystalbond ${ }^{\text {TM }} 509$ adhesive. The otoliths were viewed by eye, and when necessary, under a stereo microscope to identify the location of the core, and the position of the core marked using a pencil across the otolith surface. At least one transverse cross-section (hereafter "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with
two, three inch diameter, Norton Diamond Grinding Wheels, separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The position of the marked core fell within the 0.5 mm space between the blades, such that the core was included in the removed thinsection. Otolith thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the sections.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Red Drum.

5.2.3 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Red Drum. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern

Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Red Drum otolith annulus formation occurs between March and July (Ross et al. 1995 and modified by CQFE/ODU). A Red Drum with two visible annuli could be assigned an age of 2 or 3 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 2 no matter when it is captured. When it is captured after July and before January, it is Age 2 no matter what its margin code is. When it is captured after December and before March and its margin code is not " 1 ", it is Age $3(2+1=3)$. When it is captured between March and July, it is Age 2 when its margin code is " 2 " but Age $3(2+1=3)$ when its margin code is "3" or "4".

Due to discrepancy on identification of the first annulus of Red Drum among Atlantic states, ASMFC has decided not to count
the smallest annulus at the center of the thin-section as the first annulus. Following ASMFC's instruction, we didn't count the smallest annulus at the center as the first annulus in 2019 (Figure 5.1).

Figure 5.1: Otolith thin-section of a 3 year-old Red Drum with the last annulus on the edge of the thin-section

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 4.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

5.2.4 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) time-series bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. When the sample size
for the current year was smaller than 50 , the entire sample was read by the reader for the second time to examine the difference within the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6 .1 (R Core Team 2019).

5.3 RESULTS

5.3.1 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 100%, There was no time series bias for the reader. The reader had an agreement of 96% with ages of fish aged in 2000 with a $C V$ of 0.73% (test of symmetry: $\chi^{2}=2, d f=2, P=$ $0.3679)$.

5.3.2 Year class

Of the 37 fish aged with otoliths, 4 age classes (0 to 1,13 , and 20) were represented (Table 5.1). The average age was 0.9 years, and the standard deviation and standard error were 3.9 and 0.64 , respectively. Yearclass data show that the fishery was comprised of 4 year-classes: fish from the 1999, 2006, and 2018 to 2019 year-classes, with fish primarily from the year class of 2019 with 91.9%. The ratio of males to females was 1:0.79 in the sample collected (Figure 5.2).

5.3.3 Age-length-key (ALK)

We developed an age-length-key (Table 5.2) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Figure 5.2: Year-class frequency distribution for Red Drum collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

Table 5.1: The number of Red Drum assigned to each total length (inch)-at-age category for 37 fish sampled for otolith age determination in Virginia during 2019.

	Age				
Interval	0	1	13	20	Totals
$18-18.99$	25	0	0	0	25
$19-19.99$	8	0	0	0	8
$20-20.99$	0	1	0	0	1
$21-21.99$	1	0	0	0	1
$44-44.99$	0	0	1	0	1
$45-45.99$	0	0	0	1	1
Totals	34	1	1	1	37

(Go back to text)

Table 5.2: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Red Drum sampled for age determination in Virginia during 2019.

	Age			
Interval	0	1	13	20
$18-18.99$	1	0	0	0
$19-19.99$	1	0	0	0
$20-20.99$	0	1	0	0
$21-21.99$	1	0	0	0
$44-44.99$	0	0	1	0
$45-45.99$	0	0	0	1

(Go back to text)

CHAPTER 6

SHEEPSHEAD Archosargus probatocephalus

6.1 INTRODUCTION

We aged a total of 44 Sheepshead, Archosargus probatocephalus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Sheepshead ages ranged from 3 to 27 years old with an average age of 8.6 , a standard deviation of 7.5 , and a standard error of 1.13. Thirteen age classes (3 to 8 , $12,15,18,21$ to 23 , and 27) were represented, comprising fish of the 1992, 1996 to 1998, 2001, 2004, 2007, and 2011 to 2016 year-classes. The sample was dominated by fish from the year-classes of 2011, 2015, and 2016 with $13.6 \%, 20.4 \%$, and 29.6%, respectively.

6.2 METHODS

6.2.1 Handling of collections

Sagittal otoliths, hereafter, referred to as "otoliths", were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

6.2.2 Preparation

Otoliths were processed for age determination following the methods described in Ballenger (2011). The left or right otolith was randomly selected and embedded, distal side down, in epoxy resin and allowed to harden overnight. The otoliths were viewed by eye, and when necessary, under a stereo microscope to identify the location of the core, and the position of the core marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter "thin-section") was then removed from the marked core of
each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ lowspeed saw equipped with two, three inch diameter, Norton Diamond Grinding Wheels, separated by a stainless steel spacer of 0.5 mm (diameter 2.5"). The position of the marked core fell within the 0.5 mm space between the blades, such that the core was included in the removed thin section. Otolith thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the section.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Sheepshead.

6.2.3 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Sheepshead. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Sheepshead otolith annulus formation occurs between May and July (Ballenger 2011 and modified by CQFE/ODU). A Sheepshead with nine visible annuli could be assigned an age of 9 or 10 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 9 no matter when it is captured. When it is captured after July and before January, it is Age 9 no matter what its margin code is. When it is captured after December and before May and its margin code is not " 1 ", it is Age $10(9+1=10)$. When it is captured between May and July, it is Age 9 when its margin code is " 2 " but Age $10(9+1=10)$ when its margin code is "3" or "4".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus,
one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by one reader only using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 6.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 6.1: Otolith thin-section of a 5 year-old Sheepshead

6.2.4 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) time-series bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. When the sample size for the current year was smaller than 50, the entire sample was read by the reader for the second time to examine the difference within the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6 .1 (R Core Team 2019).

6.3 RESULTS

6.3.1 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 93% and a $C V$ of 0.62% (test of symmetry: $\chi^{2}=3, d f=3$, $P=0.3916$). There was no time series bias for the reader. The reader had an agreement of 98% with ages of fish aged in 2008 with a $C V$ of 1.7% (test of symmetry: χ^{2} $=1, d f=1, P=0.3173)$.

6.3.2 Year class

Of the 44 fish aged with otoliths, 13 age classes (3 to $8,12,15,18,21$ to 23 , and 27) were represented (Table 6.1). The average age was 8.6 years, and the standard deviation and standard error were 7.5 and 1.13, respectively. Year-class data show that the fishery was comprised of 13 yearclasses: fish from the 1992, 1996 to 1998, 2001, 2004, 2007, and 2011 to 2016 yearclasses, with fish primarily from the year classes of 2011, 2015, and 2016 with 13.6\%, 20.4%, and 29.6%, respectively. The ratio of males to females was 1:1.33 in the sample collected (Figure 6.2).

Figure 6.2: Year-class frequency distribution for Sheepshead collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

6.3.3 Age-length-key
 (ALK)

We developed an age-length-key (Table 6.2) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 6.1: The number of Sheepshead assigned to each total length (inch)-at-age category for 44 fish sampled for otolith age determination in Virginia during 2019.

	Age																	
Interval	3	4	5	6	7	8	12	15	18	21	22	23	27	Totals				
$14-14.99$	1	0	0	0	0	0	0	0	0	0	0	0	0	1				
$15-15.99$	3	1	0	0	0	0	0	0	0	0	0	0	0	4				
$16-16.99$	3	2	0	0	0	0	0	0	0	0	0	0	0	5				
$17-17.99$	4	5	0	0	0	0	0	0	0	0	0	0	0	9				
$18-18.99$	2	0	0	2	0	2	0	0	0	0	0	0	0	6				
$19-19.99$	0	1	1	0	0	1	0	0	0	0	0	0	0	3				
$20-20.99$	0	0	0	0	1	0	0	0	0	0	0	0	0	1				
$21-21.99$	0	0	0	0	0	2	0	0	0	0	0	1	0	3				
$22-22.99$	0	0	0	0	1	1	0	0	0	1	1	0	0	4				
$23-23.99$	0	0	0	0	0	0	1	0	0	1	0	0	2	4				
$24-24.99$	0	0	0	0	0	0	0	0	2	0	0	0	0	2				
$25-25.99$	0	0	0	0	0	0	0	1	0	0	1	0	0	2				
Totals	13	9	1	2	2	6	1	1	2	2	2	1	2	44				

(Go back to text)

Table 6.2: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Sheepshead sampled for age determination in Virginia during 2019.

	Age																		
Interval	3	4	5	6	7	8	12	15	18	21	22	23	27						
$14-14.99$	1	0	0	0	0	0	0	0	0	0	0	0	0						
$15-15.99$	0.75	0.25	0	0	0	0	0	0	0	0	0	0	0						
$16-16.99$	0.6	0.4	0	0	0	0	0	0	0	0	0	0	0						
$17-17.99$	0.44	0.56	0	0	0	0	0	0	0	0	0	0	0						
$18-18.99$	0.33	0	0	0.33	0	0.33	0	0	0	0	0	0	0						
$19-19.99$	0	0.33	0.33	0	0	0.33	0	0	0	0	0	0	0						
$20-20.99$	0	0	0	0	1	0	0	0	0	0	0	0	0						
$21-21.99$	0	0	0	0	0	0.67	0	0	0	0	0	0.33	0						
$22-22.99$	0	0	0	0	0.25	0.25	0	0	0	0.25	0.25	0	0						
$23-23.99$	0	0	0	0	0	0	0.25	0	0	0.25	0	0	0.5						
$24-24.99$	0	0	0	0	0	0	0	0	1	0	0	0	0						
$25-25.99$	0	0	0	0	0	0	0	0.5	0	0	0.5	0	0						

($\overline{\text { Go back to text) }}$

CHAPTER 7

ATLANTIC SPADEFISH Chaetodipterus faber

7.1 INTRODUCTION

We aged a total of 315 Spadefish, Chaetodipterus faber, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Spadefish ages ranged from 1 to 10 years old with an average age of 3.2, a standard deviation of 1.4, and a standard error of 0.08 . Ten age classes (1 to 10) were represented, comprising fish of the 2009 to 2018 yearclasses. The sample was dominated by fish from the year-classes of 2015 and 2016 with 29.2% and 33.3%, respectively.

7.2 METHODS

7.2.1 Sample size for ageing

We estimated sample size for ageing Spadefish in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{7.1}
\end{equation*}
$$

where A is the sample size for ageing Spadefish in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Spadefish used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Spadefish collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (7.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% C V$ reduction for
the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

7.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

7.2.3 Preparation

We used our thin-section and bake technique to process Spadefish sagittal otoliths (hereafter, referred to as "otoliths") for age determination. Otolith preparation began by randomly selecting either the right or left otolith. Each whole otolith was placed in a ceramic "Coors" Spot plate well and baked in a Thermolyne 1400 furnace at $400{ }^{\circ} \mathrm{C}$. Baking time was dependent on the otolith's size and gauged by color, with a light caramel color desired. Once a suitable color was achieved the baked otolith was embedded in epoxy resin with its distal surface orientated downwards and allowed to harden overnight. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, re-
ferred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The otolith was positioned so the blades straddled each side of the otolith focus. It was crucial that this cut be perpendicular to the long axis of the otolith. Failure to do so resulted in broadening and distored winter growth zones. A proper cut resulted in annuli that were clearly defined and delineated. Once cut, thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thinsection.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Atlantic Spadefish.

7.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Spadefish. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than
two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Spadefish otolith annulus formation occurs between January and July (Hayse 1987 and modified by CQFE/ODU). A Spadefish with three visible annuli could be assigned an age of 3 or 4 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 3 no matter when it is captured. When it is captured after July and before January, it is Age 3 no matter what its margin code is. When it is captured between January and July, it is Age 3 when its margin code is " 2 " but Age $4(3+1=4)$ when its margin code is " 3 " or " 4 ".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus,
one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 7.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 7.1: Otolith thin-section of a 2 year-old Spadefish

7.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

7.3 RESULTS

7.3.1 Sample size

We estimated a sample size of 325 Spadefish in 2019, ranging in length intervals from 3 to 22 inches (Table 7.1). This sample size provided a range in $(C V)$ for age composition approximately from the smallest $(C V)$ of 7% for Age 2 to the largest $(C V)$ of 23% for Age 6. In 2019, we randomly selected and aged 315 fish from 398 Spadefish collected by VMRC. We fell short in our over-all collections for this optimal length-class sampling estimate by 15 fish. We were not short any fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

7.3.2 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 94% and a $C V$ of 1.32% (test of symmetry: $\chi^{2}=3, d f=3$, $P=0.3916$). There was no time series bias for the reader. The reader had an agreement of 82% with ages of fish aged in 2003 with a $C V$ of 2% (test of symmetry: $\chi^{2}=$ $9, d f=6, P=0.1736)$.

7.3.3 Year class

Of the 315 fish aged with otoliths, 10 age classes (1 to 10) were represented (Table 7.2). The average age was 3.2 years, and the standard deviation and standard error were 1.4 and 0.08 , respectively. Year-class data show that the fishery was comprised of 10 year-classes: fish from the 2009 to 2018 year-classes, with fish primarily from the year classes of 2015 and 2016 with 29.2% and 33.3%, respectively. The ratio of males to females was 1:0.85 in the sample collected (Figure 7.2).

Figure 7.2: Year-class frequency distribution for Spadefish collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

7.3.4 Age-length-key (ALK)

We developed an age-length-key (Table 7.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 7.1: Number of Atlantic Spadefish collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$3-3.99$	5	0	0	5
$4-4.99$	6	7	6	0
$5-5.99$	13	15	14	0
$6-6.99$	39	47	40	0
$7-7.99$	44	48	44	0
$8-8.99$	32	38	32	0
$9-9.99$	22	24	22	0
$10-10.99$	16	21	16	0
$11-11.99$	16	23	16	0
$12-12.99$	22	28	22	0
$13-13.99$	15	27	16	0
$14-14.99$	15	24	16	0
$15-15.99$	15	26	16	0
$16-16.99$	14	19	14	0
$17-17.99$	18	22	18	0
$18-18.99$	12	17	12	0
$19-19.99$	6	7	6	0
$20-20.99$	5	4	4	1
$21-21.99$	5	1	1	4
$22-22.99$	5	0	0	5
Totals	325	398	315	15

(Go back to text)

Table 7.2: The number of Atlantic Spadefish assigned to each total length-at-age category for 315 fish sampled for otolith age determination in Virginia during 2019.

	Age										
Interval	1	2	3	4	5	6	7	8	9	10	Totals
$4-4.99$	6	0	0	0	0	0	0	0	0	0	6
$5-5.99$	12	2	0	0	0	0	0	0	0	0	14
$6-6.99$	15	20	5	0	0	0	0	0	0	0	40
$7-7.99$	0	21	23	0	0	0	0	0	0	0	44
$8-8.99$	0	6	22	4	0	0	0	0	0	0	32
$9-9.99$	0	4	17	1	0	0	0	0	0	0	22
$10-10.99$	0	2	11	3	0	0	0	0	0	0	16
$11-11.99$	0	0	10	4	2	0	0	0	0	0	16
$12-12.99$	0	0	6	14	2	0	0	0	0	0	22
$13-13.99$	0	0	8	8	0	0	0	0	0	0	16
$14-14.99$	0	0	2	12	1	1	0	0	0	0	16
$15-15.99$	0	0	1	15	0	0	0	0	0	0	16
$16-16.99$	0	0	0	10	2	0	2	0	0	0	14
$17-17.99$	0	0	0	16	0	2	0	0	0	0	18
$18-18.99$	0	0	0	4	3	0	4	1	0	0	12
$19-19.99$	0	0	0	1	1	1	0	1	1	1	6
$20-20.99$	0	0	0	0	1	0	3	0	0	0	4
$21-21.99$	0	0	0	0	0	0	1	0	0	0	1
Totals	33	55	105	92	12	4	10	2	1	1	315

(Go back to text)

Table 7.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Atlantic Spadefish sampled for age determination in Virginia during 2019.

		Age								
Interval	1	2	3	4	5	6	7	8	9	10
$4-4.99$	1	0	0	0	0	0	0	0	0	0
$5-5.99$	0.86	0.14	0	0	0	0	0	0	0	0
$6-6.99$	0.38	0.5	0.12	0	0	0	0	0	0	0
$7-7.99$	0	0.48	0.52	0	0	0	0	0	0	0
$8-8.99$	0	0.19	0.69	0.12	0	0	0	0	0	0
$9-9.99$	0	0.18	0.77	0.05	0	0	0	0	0	0
$10-10.99$	0	0.12	0.69	0.19	0	0	0	0	0	0
$11-11.99$	0	0	0.62	0.25	0.12	0	0	0	0	0
$12-12.99$	0	0	0.27	0.64	0.09	0	0	0	0	0
$13-13.99$	0	0	0.5	0.5	0	0	0	0	0	0
$14-14.99$	0	0	0.12	0.75	0.06	0.06	0	0	0	0
$15-15.99$	0	0	0.06	0.94	0	0	0	0	0	0
$16-16.99$	0	0	0	0.71	0.14	0	0.14	0	0	0
$17-17.99$	0	0	0	0.89	0	0.11	0	0	0	0
$18-18.99$	0	0	0	0.33	0.25	0	0.33	0.08	0	0
$19-19.99$	0	0	0	0.17	0.17	0.17	0	0.17	0.17	0.17
$20-20.99$	0	0	0	0	0.25	0	0.75	0	0	0
$21-21.99$	0	0	0	0	0	0	1	0	0	0

(Go back to text)

CHAPTER 8

SPANISH MACKEREL Scomberomorous maculatus

8.1 INTRODUCTION

We aged a total of 233 Spanish Mackerel, Scomberomorous maculatus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Spanish Mackerel ages ranged from 1 to 7 years old with an average age of 2 , a standard deviation of 1.3 , and a standard error of 0.09 . Seven age classes (1 to 7) were represented, comprising fish of the 2012 to 2018 year-classes. The sample was dominated by fish from the year-class of 2018 with 51.1%.

8.2 METHODS

8.2.1 Sample size for ageing

We estimated sample size for ageing Spanish Mackerel in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{8.1}
\end{equation*}
$$

where A is the sample size for ageing Spanish Mackerel in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Spanish Mackerel used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Spanish Mackerel collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (8.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above
which there is only a $1 \% C V$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

8.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

8.2.3 Preparation

Sagittal otoliths, hereafter, referred to as "otolith", were processed for age determination. The left or right otolith was randomly selected and embedded, distal side down, in epoxy resin and allowed to harden overnight. The otoliths were viewed by eye, and when necessary, under a stereo microscope to identify the location of the core, and the position of the core marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ lowspeed saw equipped with two, three inch diameter, Norton Diamond Grinding Wheels, separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The position of the marked core fell within the 0.5 mm space between the blades, such that the core was included in the removed thin section. Otolith thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the
slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the section.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Spanish Mackerel.

8.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Spanish Mackerel. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin
code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Spanish Mackerel otolith annulus formation occurs between May and June (Schmidt et al. 1993). A Spanish Mackerel with two visible annuli could be assigned an age of 2 or 3 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 2 no matter when it is captured. When it is captured after June and before January, it is Age 2 no matter what its margin code is. When it is captured after December and before May and its margin code is not " 1 ", it is Age 3 $(2+1=3)$. When it is captured between May and June, it is Age 2 when its margin code is " 2 " but Age $3(2+1=3)$ when its margin code is " 3 " or "4".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 8.1). All samples were aged in chronological order without knowledge of
the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 8.1: Otolith thin-section of a 3 year-old Spanish Mackerel with the last annulus on the edge of the thin-section

8.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

8.3 RESULTS

8.3.1 Sample size

We estimated a sample size of 245 Spanish Mackerel in 2019, ranging in length intervals from 12 to 32 inches (Table 8.1). This sample size provided a range in $(C V)$ for age composition approximately from the smallest ($C V$) of 4% for Age 1 to the largest $(C V)$ of 19% for Age 3. In 2019, we randomly selected and aged 233 fish from 411

Spanish Mackerel collected by VMRC. We fell short in our over-all collections for this optimal length-class sampling estimate by 24 fish. We were not short any fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

8.3.2 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 94% and a $C V$ of 1.14% (test of symmetry: $\chi^{2}=3, d f=3$, $P=0.3916)$.

There was no time series bias for the reader. The reader had an agreement of 98% with ages of fish aged in 2003 with a $C V$ of 0.94% (test of symmetry: $\chi^{2}=1, d f=1, P=$ $0.3173)$.

8.3.3 Year class

Of the 233 fish aged with otoliths, 7 age classes (1 to 7) were represented (Table 8.2). The average age was 2 years, and the standard deviation and standard error were 1.3 and 0.09 , respectively. Year-class data show that the fishery was comprised of 7 year-classes: fish from the 2012 to 2018 year-classes, with fish primarily from the year class of 2018 with 51.1%. The ratio of males to females was 1:2.53 in the sample collected (Figure 8.2).

8.3.4 Age-length-key (ALK)

We developed an age-length-key (Table 8.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Figure 8.2: Year-class frequency distribution for Spanish Mackerel collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

Table 8.1: Number of Spanish Mackerel collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$12-12.99$	5	0	0	5
$13-13.99$	5	3	3	2
$14-14.99$	17	40	18	0
$15-15.99$	33	85	34	0
$16-16.99$	37	69	38	0
$17-17.99$	33	58	34	0
$18-18.99$	19	30	20	0
$19-19.99$	17	24	18	0
$20-20.99$	11	20	12	0
$21-21.99$	12	28	12	0
$22-22.99$	6	13	6	0
$23-23.99$	5	7	6	0
$24-24.99$	5	6	6	0
$25-25.99$	5	6	6	0
$26-26.99$	5	6	6	0
$27-27.99$	5	8	6	0
$28-28.99$	5	3	3	2
$29-29.99$	5	3	3	2
$30-30.99$	5	1	1	4
$31-31.99$	5	1	1	4
$32-32.99$	5	0	0	5
Totals	245	411	233	24

(Go back to text)

Table 8.2: The number of Spanish Mackerel assigned to each total length-at-age category for 233 fish sampled for otolith age determination in Virginia during 2019.

	Age							
Interval	1	2	3	4	5	6	7	Totals
$13-13.99$	3	0	0	0	0	0	0	3
$14-14.99$	17	1	0	0	0	0	0	18
$15-15.99$	31	3	0	0	0	0	0	34
$16-16.99$	33	5	0	0	0	0	0	38
$17-17.99$	25	8	1	0	0	0	0	34
$18-18.99$	3	12	5	0	0	0	0	20
$19-19.99$	5	10	2	1	0	0	0	18
$20-20.99$	1	8	2	1	0	0	0	12
$21-21.99$	1	3	6	2	0	0	0	12
$22-22.99$	0	1	5	0	0	0	0	6
$23-23.99$	0	0	2	3	0	1	0	6
$24-24.99$	0	2	2	2	0	0	0	6
$25-25.99$	0	1	1	1	3	0	0	6
$26-26.99$	0	0	1	4	1	0	0	6
$27-27.99$	0	0	1	5	0	0	0	6
$28-28.99$	0	0	0	2	1	0	0	3
$29-29.99$	0	0	0	1	0	1	1	3
$30-30.99$	0	0	0	0	0	1	0	1
$31-31.99$	0	0	0	0	0	1	0	1
Totals	119	54	28	22	5	4	1	233

(Go back to text)

Table 8.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Spanish Mackerel sampled for age determination in Virginia during 2019.

	Age							
Interval	1	2	3	4	5	6	7	
$13-13.99$	1	0	0	0	0	0	0	
$14-14.99$	0.94	0.06	0	0	0	0	0	
$15-15.99$	0.91	0.09	0	0	0	0	0	
$16-16.99$	0.87	0.13	0	0	0	0	0	
$17-17.99$	0.74	0.24	0.03	0	0	0	0	
$18-18.99$	0.15	0.6	0.25	0	0	0	0	
$19-19.99$	0.28	0.56	0.11	0.06	0	0	0	
$20-20.99$	0.08	0.67	0.17	0.08	0	0	0	
$21-21.99$	0.08	0.25	0.5	0.17	0	0	0	
$22-22.99$	0	0.17	0.83	0	0	0	0	
$23-23.99$	0	0	0.33	0.5	0	0.17	0	
$24-24.99$	0	0.33	0.33	0.33	0	0	0	
$25-25.99$	0	0.17	0.17	0.17	0.5	0	0	
$26-26.99$	0	0	0.17	0.67	0.17	0	0	
$27-27.99$	0	0	0.17	0.83	0	0	0	
$28-28.99$	0	0	0	0.67	0.33	0	0	
$29-29.99$	0	0	0	0.33	0	0.33	0.33	
$30-30.99$	0	0	0	0	0	1	0	
$31-31.99$	0	0	0	0	0	1	0	

(Go back to text)

CHAPTER 9

SPOT Leiostomus xanthurus

9.1 INTRODUCTION

We aged a total of 230 Spot, Leiostomus xanthurus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Spot ages ranged from 0 to 3 years old with an average age of 1.2 , a standard deviation of 0.6 , and a standard error of 0.04 . Four age classes (0 to 3) were represented, comprising fish of the 2016 to 2019 year-classes. The sample was dominated by fish from the year-class of 2018 with 71.7%.

9.2 METHODS

9.2.1 Sample size for ageing

We estimated sample size for ageing Spot in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{9.1}
\end{equation*}
$$

where A is the sample size for ageing Spot in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Spot used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Spot collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (1.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% C V$ reduction for the most major age in catch by ageing an additional 100 or more fish. Finally, A_{l} is A
multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

9.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

9.2.3 Preparation

Sagittal otoliths, hereafter, referred to as "otoliths", were processed for age determination following the methods described in Barbieri et al. (1994) with a few modifications. The left or right otolith was randomly selected and embedded (distal side down) in epoxy resin and allowed to harden overnight. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). Thinsections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thin-sections.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Spot.

9.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Spot. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its mar-
gin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Spot otolith annulus formation occurs between May and July (Piner and Jones 2004). A Spot with one visible annuli could be assigned an age of 1 or 2 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 1 no matter when it is captured. When it is captured after July and before January, it is Age 1 no matter what its margin code is. When it is captured after December and before May and its margin code is not " 1 ", it is Age $2(1+1=2)$. When it is captured between May and July, it is Age 1 when its margin code is " 2 " but Age 2 (1 $+1=2$) when its margin code is " 3 " or "4".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 9.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 9.1: Otolith thin-section of a 2 year-old Spot

9.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

9.3 RESULTS

9.3.1 Sample size

We estimated a sample size of 237 Spot in 2019, ranging in length intervals from 4 to 12 inches (Table 9.1). This sample size provided a range in ($C V$) for age composition approximately from the smallest ($C V$) of 4% for Age 1 to the largest ($C V$) of 12% for Age 2. In 2019, we randomly selected and aged 230 fish from 299 Spot collected by VMRC. We fell short in our over-all collections for this optimal length-class sampling estimate by 11 fish. We were not short any fish from the major length intervals (the
interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

9.3.2 Reading precision

There was a difference between the first and second readings for the reader with an agreement of 84% and a $C V$ of 7.54% (test of symmetry: $\chi^{2}=8, d f=1, P=$ 0.0047).

There was no time series bias for the reader. The reader had an agreement of 100% with ages of fish aged in 2003.

9.3.3 Year class

Of the 230 fish aged with otoliths, 4 age classes (0 to 3) were represented (Table 9.2). The average age was 1.2 years, and the standard deviation and standard error were 0.6 and 0.04 , respectively. Year-class data show that the fishery was comprised of 4 year-classes: fish from the 2016 to 2019 year-classes, with fish primarily from the year class of 2018 with 71.7%. The ratio of males to females was 1:8.5 in the sample collected (Figure 9.2).

Figure 9.2: Year-class frequency distribution for Spot collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' is for gonads that were not available for examination or were not examined for sex during sampling.

9.3.4 Age-length-key

 (ALK)We developed an age-length-key (Table $9.3)$ that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 9.1: Number of Spot collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019 , and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$4-4.99$	5	6	6	0
$5-5.99$	6	10	6	0
$6-6.99$	6	11	6	0
$7-7.99$	28	32	28	0
$8-8.99$	51	66	52	0
$9-9.99$	73	92	74	0
$10-10.99$	55	80	56	0
$11-11.99$	8	2	2	6
$12-12.99$	5	0	0	5
Totals	237	299	230	11

(Go back to text)

Table 9.2: The number of Spot assigned to each total length-at-age category for 230 fish sampled for otolith age determination in Virginia during 2019.

Age					
Interval	0	1	2	3	Totals
$4-4.99$	6	0	0	0	6
$5-5.99$	5	1	0	0	6
$6-6.99$	1	5	0	0	6
$7-7.99$	5	22	1	0	28
$8-8.99$	0	43	6	3	52
$9-9.99$	0	59	14	1	74
$10-10.99$	0	35	20	1	56
$11-11.99$	0	0	2	0	2
Totals	17	165	43	5	230

(Go back to text)

Table 9.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Spot sampled for age determination in Virginia during 2019.

	Age			
Interval	0	1	2	3
$4-4.99$	1	0	0	0
$5-5.99$	0.83	0.17	0	0
$6-6.99$	0.17	0.83	0	0
$7-7.99$	0.18	0.79	0.04	0
$8-8.99$	0	0.83	0.12	0.06
$9-9.99$	0	0.8	0.19	0.01
$10-10.99$	0	0.62	0.36	0.02
$11-11.99$	0	0	1	0

(Go back to text)

CHAPTER 10

SPOTTED SEATROUT Cynoscion nebulosus

10.1 INTRODUCTION

We aged a total of 258 Spotted Seatrout, Cynoscion nebulosus, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. Spotted Seatrout ages ranged from 0 to 4 years old with an average age of 1.5 , a standard deviation of 0.8 , and a standard error of 0.05 . Five age classes (0 to 4) were represented, comprising fish of the 2015 to 2019 year-classes. The sample was dominated by fish from the year-class of 2018 with 61.6%.

10.2 METHODS

10.2.1 Sample size for ageing

We estimated sample size for ageing Spotted Seatrout in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{10.1}
\end{equation*}
$$

where A is the sample size for ageing Spotted Seatrout in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Spotted Seatrout used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Spotted Seatrout collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (10.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a
number above which there is only a $1 \% C V$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

10.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes. In the lab they were sorted by date of capture, their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

10.2.3 Preparation

Sagittal otoliths, hereafter, referred to as "otoliths", were processed for age determination. The left or right otolith was randomly selected and attached, distal side down, to a glass slide with clear Crystalbond ${ }^{\text {TM }} 509$ adhesive. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a pencil across the otolith surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). Thinsections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission
through the thin-sections.
Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Spotted Seatrout.

10.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Spotted Seatrout. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month
it is captured. If a fish is captured after December 31 and before its annulus deposition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Spotted Seatrout otolith annulus formation occurs between March and May (Ihde and Chittenden 2003). A Spotted Seatrout with two visible annuli could be assigned an age of 2 or 3 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 2 no matter when it is captured. When it is captured after May and before January, it is Age 2 no matter what its margin code is. When it is captured after December and before March and its margin code is not " 1 ", it is Age $3(2+1=3)$. When it is captured between March and May, it is Age 2 when its margin code is " 2 " but Age $3(2+1=3)$ when its margin code is " 3 " or " 4 ".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 10.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the fi-
nal age and was assigned to the fish.

Figure 10.1: Otolith thin-section of a 4 yearold Spotted Seatrout with the last annulus on the edge of the thin-section

10.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

10.3 RESULTS

10.3.1 Sample size

We estimated a sample size of 295 Spotted Seatrout in 2019, ranging in length intervals from 8 to 34 inches (Table 10.1). This sample size provided a range in $(C V)$ for age composition approximately from the smallest ($C V$) of 6% for Age 1 to the largest
($C V$) of 17% for Age 4. In 2019, we randomly selected and aged 258 fish from 445 Spotted Seatrout collected by VMRC. We fell short in our over-all collections for this optimal length-class sampling estimate by 47 fish. We were not short any fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

10.3.2 Reading precision

There was no significant difference between the first and second readings for the reader with an agreement of 100%,

There was no time series bias for the reader. The reader had an agreement of 100% with ages of fish aged in 2003.

10.3.3 Year class

Of the 258 fish aged with otoliths, 5 age classes (0 to 4) were represented (Table 10.2). The average age was 1.5 years, and the standard deviation and standard error were 0.8 and 0.05 , respectively. Year-class data show that the fishery was comprised of 5 year-classes: fish from the 2015 to 2019 year-classes, with fish primarily from the year class of 2018 with 61.6%. The ratio of males to females was 1:1.71 in the sample collected (Figure 10.2).

10.3.4 Age-length-key (ALK)

We developed an age-length-key (Table 10.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Figure 10.2: Year-class frequency distribution for Spotted Seatrout collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

Table 10.1: Number of Spotted Seatrout collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
8-8.99	5	0	0	5
9-9.99	5	0	0	5
10-10.99	5	6	6	0
11-11.99	5	7	6	0
12-12.99	18	21	18	0
13-13.99	11	28	12	0
14-14.99	13	46	14	0
15-15.99	21	40	22	0
16-16.99	28	47	28	0
17-17.99	27	54	28	0
18-18.99	24	42	24	0
19-19.99	21	54	22	0
20-20.99	20	35	20	0
21-21.99	10	14	10	0
22-22.99	11	12	12	0
23-23.99	9	10	10	0
24-24.99	8	9	8	0
25-25.99	7	9	8	0
26-26.99	6	7	6	0
27-27.99	6	3	3	3
28-28.99	5	0	0	5
29-29.99	5	0	0	5
30-30.99	5	1	1	4
31-31.99	5	0	0	5
32-32.99	5	0	0	5
33-33.99	5	0	0	5
34-34.99	5	0	0	5
Totals	295	445	258	47

(Go back to text)

Table 10.2: The number of Spotted Seatrout assigned to each total length-at-age category for 258 fish sampled for otolith age determination in Virginia during 2019.

	Age					
Interval	0	1	2	3	4	Totals
$10-10.99$	5	1	0	0	0	6
$11-11.99$	0	6	0	0	0	6
$12-12.99$	0	18	0	0	0	18
$13-13.99$	0	12	0	0	0	12
$14-14.99$	0	14	0	0	0	14
$15-15.99$	0	22	0	0	0	22
$16-16.99$	0	27	1	0	0	28
$17-17.99$	0	19	9	0	0	28
$18-18.99$	0	18	5	1	0	24
$19-19.99$	0	15	6	1	0	22
$20-20.99$	0	6	11	3	0	20
$21-21.99$	0	1	9	0	0	10
$22-22.99$	0	0	10	2	0	12
$23-23.99$	0	0	6	4	0	10
$24-24.99$	0	0	2	6	0	8
$25-25.99$	0	0	1	6	1	8
$26-26.99$	0	0	0	4	2	6
$27-27.99$	0	0	0	3	0	3
$30-30.99$	0	0	0	0	1	1
Totals	5	159	60	30	4	258

(Go back to text)

Table 10.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Spotted Seatrout sampled for age determination in Virginia during 2019.

	Age					
Interval	0	1	2	3	4	
$10-10.99$	0.83	0.17	0	0	0	
$11-11.99$	0	1	0	0	0	
$12-12.99$	0	1	0	0	0	
$13-13.99$	0	1	0	0	0	
$14-14.99$	0	1	0	0	0	
$15-15.99$	0	1	0	0	0	
$16-16.99$	0	0.96	0.04	0	0	
$17-17.99$	0	0.68	0.32	0	0	
$18-18.99$	0	0.75	0.21	0.04	0	
$19-19.99$	0	0.68	0.27	0.05	0	
$20-20.99$	0	0.3	0.55	0.15	0	
$21-21.99$	0	0.1	0.9	0	0	
$22-22.99$	0	0	0.83	0.17	0	
$23-23.99$	0	0	0.6	0.4	0	
$24-24.99$	0	0	0.25	0.75	0	
$25-25.99$	0	0	0.12	0.75	0.12	
$26-26.99$	0	0	0	0.67	0.33	
$27-27.99$	0	0	0	1	0	
$30-30.99$	0	0	0	0	1	

(Go back to text)

CHAPTER 11

STRIPED BASS Morone saxatilis

11.1 INTRODUCTION

We aged a total of 930 Striped Bass (excluding 2 fish with otolith-ages only), using their scales collected by the VMRC's Biological Sampling Program in 2019. Of 930 aged fish, 588 and 342 fish were collected in Chesapeake Bay (bay fish) and Virginia waters of the Atlantic Ocean (ocean fish), respectively. The average bay fish age was 8.1 years with a standard deviation of 4.3 and a standard error of 0.18 . Twenty-three age classes (1 to 23) were represented in the bay fish, comprising fish from the 1996 to 2018 year classes. The bay fish sample in 2019 was dominated by the year classes of 2010, 2011, 2014, and 2015 with $9 \%, 20 \%$, 17%, and 14%, respectively. The average ocean fish age was 11.8 years with a standard deviation of 3.5 and a standard error of 0.19. Eighteen age classes (5,7 to 19,21 , and 23 to 25) were represented in the ocean fish, comprising fish from the 1994 to 1996, 1998, 2000 to 2012, and 2014 year classes. The ocean fish sample in 2019 was dominated by the year classes of 2005,2007 , 2009,2010 , and 2011 with $8 \%, 14 \%, 10 \%$, 15%, and 19%, respectively. We also aged a total of 289 fish using their otoliths in addition to ageing their scales. The otolith ages were compared to the scale ages to examine how close both ages were to one another (see details in Results).

11.2 METHODS

11.2.1 Sample size for ageing

We estimated sample sizes for ageing Striped Bass collected in both Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019, respectively, using a twostage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equa-
tion is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{11.1}
\end{equation*}
$$

where A is the sample size for ageing Striped Bass in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Striped Bass used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Striped Bass collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (11.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% \mathrm{CV}$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

11.2.2 Handling of collection

Sagittal otoliths (hereafter, referred to as "otoliths") and scales were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted based on date of capture. Their envelope labels were verified against VMRC's collection data, and each fish assigned a unique Age and Growth Laboratory identification number. All otoliths and scales were stored dry within their original labeled coin envelopes; otoliths were contained inside protective Axygen 2.0 ml microtubes.

11.2.3 Preparation

Scales

Striped Bass scales were prepared for age and growth analysis by making acetate impressions of the scale microstructure. Due to extreme variation in the size and shape of scales from individual fish, we selected only those scales that had even margins and which were of uniform size. We selected a range of four to six preferred scales (based on overall scale size) from each fish, making sure that only non-regenerated scales were used. Scale impressions were made on extruded clear acetate sheets (25 $\mathrm{mm} \times 75 \mathrm{~mm}$) with a Carver Laboratory Heated Press (model "C"). The scales were pressed with the following settings:

Pressure: 15000 psi
Temperature: $77^{\circ} \mathrm{C}\left(170{ }^{\circ} \mathrm{F}\right)$
Time: 5 to 10 min
Striped Bass scales that were the size of a quarter (coin) or larger, were pressed individually for up to twenty minutes. After pressing, the impressions were viewed with a Bell and Howell microfiche reader and checked again for regeneration and incomplete margins. Impressions that were too light, or when all scales were regenerated a new impression was made using different scales from the same fish.

Click here to obtain the protocol at the CQFE website on how to prepare scale impression for ageing Striped Bass.

Otoliths

We used our thin-section and bake technique to process Striped Bass sagittal otoliths (hereafter, referred to as "otoliths") for age determination. Otolith preparation began by randomly selecting either the right or left otolith. Each whole otolith was placed in a ceramic "Coors" spot plate well and baked in a Thermolyne 1400 furnace at $400{ }^{\circ} \mathrm{C}$. Baking time was
dependent on the otolith's size and gauged by color, with a light caramel color desired. Once a suitable color was achieved the baked otolith was embedded in epoxy resin with its distal surface orientated downwards and allowed to harden overnight. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The otolith was positioned so the blades straddled each side of the otolith focus. It was crucial that this cut be perpendicular to the long axis of the otolith. Failure to do so resulted in broadening and distorted winter growth zones. A proper cut resulted in annuli that were clearly defined and delineated. Once cut, thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thinsection.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Striped Bass.

11.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of reading the information contained in its otolith, the date of its capture, and the species-specific period when it deposits its annulus. Each year, as the fish grows, its otoliths grow and
leave behind markers of their age, called annuli. Technically, an otolith annulus is the combination of both the opaque and the translucent bands. In practice, only the opaque bands are counted as annuli. The number of these visible dark bands replaces " x " in our notation below, and is the initial "age" assignment of the fish.

Second, the otolith section is examined for translucent growth. If no translucent growth is visible beyond the last dark annulus, the otolith is called "even" and no modification of the assigned age is made. The initial assigned age, then, is the age class of the fish. Any growth beyond the last annulus can be interpreted as either being toward the next age class or within the same age class. If translucent growth is visible beyond the last dark annulus, a " + " is added to the notation.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the dark band of the annulus. If the fish is captured after the end of the species-specific annulus deposition period and before January 1 , it is assigned an age class notation of " $x+x$ ", where " x " is the number of dark bands in the otolith. If the fish is captured between January 1 and the end of the species-specific annulus deposition period, it is assigned an age class notation of " $\mathrm{x}+(\mathrm{x}+1)$ ". Thus, any growth beyond the last annulus, after its "birthday", but before the dark band deposition period, is interpreted as being toward the next age class.

For example, Striped Bass otolith deposition occurs between April and June (Secor et al. 1995). A Striped Bass captured between January 1 and June 30 , before the end of the species' annulus formation period, with three visible annuli and some translucent growth after the last annulus, would be assigned an age class of
" $\mathrm{x}+(\mathrm{x}+1)$ " or $3+(3+1)$, noted as $3+4$. This is the same age-class assigned to a fish with four visible annuli captured after the end of June 30 , the period of annulus formation, which would be noted as $4+4$.

Striped Bass scales are also considered to have a deposition between April and June (Secor et al. 1995), and age class assignment using these hard-parts is conducted in the same way as otoliths.

In 2019 the new notation method recommended by ASMFC was not used to assign ages on Striped Bass for two reasons:

1. Growth widths among annuli on Striped Bass scales don't grow uniformly unlike on Striped Bass otoliths, therefore, it is not practical to use the margin codes on the scales;
2. Although the margin codes can be applied to Striped Bass otoliths, it is more reasonable that the same ageing notation is used on both scales and otoliths versus using two different ageing notations on scales and otoliths, separately, keeping a consistent ageing notation between two hard-parts of the same species.

All Striped Bass samples (scale pressings and sectioned otoliths) were aged by two different readers in chronological order based on collection date, without knowledge of previously estimated ages or the specimen lengths. When the readers' ages agreed, that age was assigned to the fish. When the two readers disagreed, both readers sat down together and re-aged the fish again without any knowledge of previously estimated ages or lengths, then assigned a final age to the fish. When the age readers were unable to agree on a final age, the fish was excluded from further analysis.

Scales

We determined fish age by viewing acetate impressions of scales (Figure 11.1) with a standard Bell and Howell R-735 microfiche reader equipped with 20 and 29 mm lenses. Annuli on Striped Bass scales are identified based on two scale microstructure features, "crossing over" and circuli disruption. Primarily, "crossing over" in the lateral margins near the posterior/anterior interface of the scale is used to determine the origin of the annulus. Here compressed circuli (annulus) "cross-over" the previously deposited circuli of the previous year's growth. Typically annuli of the first three years can be observed transversing this interface as dark bands. These bands remain consistent throughout the posterior field and rejoin the posterior/anterior interface on the opposite side of the focus. Annuli can also be observed in the anterior lateral field of the scale. Here the annuli typically reveal a pattern of discontinuous and suddenly breaking segmented circuli. This event can also be distinguished by the presence of concentric white lines, which are typically associated with the disruption of circuli.

Figure 11.1: Scale impression of a 3 year-old Striped Bass.

Annuli can also be observed bisecting the perpendicular plain of the radial striations in the anterior field of the scale. Radii em-
anate out from the focus of the scale towards the outer corner margins of the anterior field. These radial striations consist mainly of segmented concave circuli. The point of intersection between radii and annuli results in a "straightening out" of the concave circuli. This straightening of the circuli should be consistent throughout the entire anterior field of the scale. This event is further amplified by the presence of concave circuli neighboring both directly above and below the annulus. The first year's annulus can be difficult to locate on some scales. It is typically best identified in the lateral field of the anterior portion of the scale. The distance from the focus to the first year's annulus is typically larger with respect to the following annuli. For the annuli two through six, summer growth generally decreases proportionally. For ages greater than six, a crowding effect of the annuli near the outer margins of the scale is observed. This crowding effect creates difficulties in edge interpretation. At this point it is best to focus on the straightening of the circuli at the anterior margins of the scale.

When ageing young Striped Bass, zero through age two, extreme caution must be taken as not to over age the structure. In young fish there is no point of reference to aid in the determination of the first year; this invariably results in over examination of the scale and such events as hatching or saltwater incursion marks (checks) may be interpreted as the first year.

Otoliths

All thin-sections were aged by two different readers using a Nikon SMZ1000 stereo microscope under transmitted light and darkfield polarization at between 8 and 20 times magnification (Figure 11.2). Each reader aged all of the otolith samples.

By convention an annulus is identified as the narrow opaque zone, or winter growth.

Figure 11.2: Otolith thin-section of a 4 yearold Striped Bass with the last annulus on the edge of the thin-section

Typically the first year's annulus can be determined by first locating the focus of the otolith. The focus is generally located, depending on preparation, in the center of the otolith, and is visually well defined as a dark oblong region. The first year's annulus can be located directly below the focus, along the outer ridge of the sulcal groove on the ventral and dorsal sides of the otolith. This insertion point along the sulcal ridge resembles a check mark (not to be confused with a false annulus). Here the annulus can be followed outwards along the ventral and dorsal surfaces where it encircles the focus. Subsequent annuli also emanate from the sulcal ridge; however, they do not encircle the focus, but rather travel outwards to the distal surface of the otolith. To be considered a true annulus, each annulus must be rooted in the sulcus and travel without interruption to the distal surface of the otolith. The annuli in Striped Bass have a tendency to split as they advance towards the distal surface. As a result, it is critical that reading path proceed in a direction down the sulcal ridge and outwards to the distal surface.

Click here to obtain the protocol at the CQFE website on how to age Striped Bass using their otolith thin-sections.

11.2.5 Comparison Tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, for following comparisons: 1) between the two readers in the current year; 2) within
each reader in the current year; 3) timeseries bias between the current and previous years within each reader; and 4) between scale and otoliths ages. The readings from the entire sample for the current year were used to examine the difference between two readers. A random sub-sample of 50 fish from the current year was selected for second readings to examine the difference within a reader. Fifty otoliths randomly selected from the fish aged in 2000 were used to examine the time-series bias within each reader. A figure of $1: 1$ equivalence was used to illustrate those differences (Campana et al. 1995). All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

11.3 RESULTS

11.3.1 Sample size

We estimated a sample size of 557 bay Striped Bass in 2019, ranging in length intervals from 10 to 56 inches (Table 11.1). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 10% for Age 4 to the largest $C V$ of 22% for Age 13 of the bay fish. We randomly selected and aged 589 fish (including 1 fish with otoliths only) from 770 Striped Bass collected by VMRC in Chesapeake Bay in 2019. We fell short in our over-all collections for this optimal lengthclass sampling estimate by 57 fish. We were short only a few fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

We estimated a sample size of 500 ocean Striped Bass in 2019, ranging in length intervals from 28 to 54 inches (Table 11.2). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 9% for Age 10 to the largest $C V$ of 22% for Age 16 and 17 of the ocean
fish. We aged 343 (including 1 fish with otoliths only) of 350 (the rest of fish were either without scales or over-collected for certain length interval(s)) Striped Bass collected by VMRC in Virginia waters of the Atlantic Ocean in 2019. We fell short in our over-all collections for this optimal lengthclass sampling estimate by 158 fish. We were short many fish from in the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would definitely be influenced significantly. Therefore, precaution should be used when developing ALK using these age data.

11.3.2 Scales

Both readers had high self-precision. Specifically, there was no significant difference between the first and second readings for Reader 1 with an agreement of 72% (1 year or less agreement of 94%) and a $C V$ of 2.62% (test of symmetry: $\chi^{2}=12, d f=$ $12, P=0.4457$), and there was no significant difference between the first and second readings for Reader 2 with an agreement of 68% (1 year or less agreement of 94%) and a $C V$ of 2.56% (test of symmetry: $\chi^{2}=$ $11.33, d f=13, P=0.5829)$. There was evidence of systematic disagreement between Reader 1 and Reader 2 with an agreement of 65% (1 year or less agreement of 91%) and a $C V$ of 3.23% (test of symmetry: χ^{2} $=150.44, d f=53, P<0.0001$) (Figure 11.3).

There was no time-series bias for either reader. Reader 1 had an agreement of 57% (1 year or less agreement of 92%) with ages of fish aged in 2000 with a $C V$ of 5.68% (test of symmetry: $\chi^{2}=16.33, d f=15, P$ $=0.3603$), and Reader 2 had an agreement of 55% (1 year or less agreement of 95%) with a $C V$ of 5.62% (test of symmetry: χ^{2} $=17.29, d f=13, P=0.1866)$.

Of the 588 bay Striped Bass aged with scales, 23 age classes (1 to 23) were rep-

Figure 11.3: Between-reader comparison of scale age estimates for Striped Bass collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.
resented (Table 11.3). The average age for the sample was 8.1 years. The standard deviation and standard error were 4.3 and 0.18 , respectively. Year-class data (Figure 11.4) indicates that recruitment into the fishery in Chesapeake Bay begins at age 1, which corresponds to the 2018 year-class for Striped Bass caught in 2019. Striped Bass in the sample in 2019 was dominated by the year classes of $2010,2011,2014$, and 2015 with $9 \%, 20 \%, 17 \%$, and 14%, respectively. The sex ratio of male to female was 1:1.73 for the bay fish.

Of the 342 ocean Striped Bass aged with scales, 18 age classes (5,7 to 19,21 , and 23 to 25) were represented (Table 11.4). The average age for the sample was 11.8 years. The standard deviation and standard error were 3.5 and 0.19 , respectively. Year-class data (Figure 11.5) indicates that recruitment into the fishery in Virginia waters of Atlantic ocean begins at age 5 , which corresponds to the 2014 year-class for Striped Bass caught in 2019. Striped Bass in the sample in 2019 was dominated by the year classes of $2005,2007,2009,2010$, and 2011 with $8 \%, 14 \%, 10 \%, 15 \%$, and 19%, respectively. The sex ratio of male to female was 1:6.1 for the ocean fish.

Figure 11.4: Year-class frequency distribution for Striped Bass collected in Chesapeake Bay, Virginia for ageing in 2019. Distribution is broken down by sex and estimated using scale ages. 'Unknown' represents the fish gonads that were not available for examination or were not examined for sex during sampling.

11.3.3 Otoliths

Both readers had high self-precision. Specifically, there was no significant difference between the first and second readings for Reader 1 with an agreement of 94% and a $C V$ of 0.32% (test of symmetry: $\chi^{2}=$ $3, d f=3, P=0.3916)$, and there was no significant difference between the first and second readings for Reader 2 with an agreement of 94% and a $C V$ of 0.29% (test of symmetry: $\left.\chi^{2}=3, d f=3, P=0.3916\right)$. There was no evidence of systematic disagreement between Reader 1 and Reader 2 with an agreement of 93% (1 year or less agreement of 100%) and a $C V$ of 0.45% (test of symmetry: $\chi^{2}=13, d f=14, P$ $=0.5265$) (Figure 11.6).

There was no time-series bias for either reader. Reader 1 had an agreement of 76% with ages of fish aged in 2003 with a $C V$ of 2.22% (test of symmetry: $\chi^{2}=14, d f=10$, $P=0.173$), and Reader 2 had an agreement of 81% with a $C V$ of 1.79% (test of symmetry: $\left.\chi^{2}=11, d f=7, P=0.1386\right)$.

Of the 289 Striped Bass aged with otoliths, 26 age classes (1 to 26) were represented (Table 11.5). The average age for the sam-

Figure 11.5: Year-class frequency distribution for Striped Bass collected in Virginia waters of the Atlantic Ocean for ageing in 2019. Distribution is broken down by sex and estimated using scale ages. 'Unknown' represents the fish gonads that were not available for examination or were not examined for sex during sampling.
ple was 9.6 years. The standard deviation and standard error were 5.9 and 0.35 , respectively.

11.3.4 Comparison of scale and otolith ages

We aged 287 Striped Bass using paired scales and otoliths (excluding 2 fish with otolith-ages only). There was evidence of systematic disagreement between otolith and scale ages (test of symmetry: $\chi^{2}=$ $72.09, d f=45, P=0.0063$) with an average $C V$ of 3.97%. There was an agreement of 65% between scale and otoliths ages whereas scales were assigned a lower and higher age than otoliths for 25% and 10% of the fish, respectively (Figure 11.7). There was also evidence of bias between otolith and scale ages using an age bias plot (Figure 11.8), with scale generally assigned higher ages for younger fish and lower ages for older fish than otolith age estimates.

Figure 11.6: Between-reader comparison of otolith age estimates for Striped Bass collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

Figure 11.7: Comparison of paired scale and otolith age estimates for Striped Bass collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

11.3.5 Age-Length-Key (ALK)

We developed an age-length-key for both bay (Table 11.6) and ocean fish (Table 11.7) using scale ages, separately. The ALK can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using scale ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Figure 11.8: Age-bias plot for Striped Bass scale and otolith age estimates in 2019.

11.4 RECOMMENDATIONS

We recommend that VMRC and ASMFC use otoliths for ageing Striped Bass. Although preparation time is greater for otoliths compared to scales, nonetheless as the mean age of Striped Bass increases in the recovering fishery, otoliths should provide more reliable estimates of age (Secor et al. 1995; Liao et al. 2013). We will continue to compare the age estimates between otoliths and scales.

Table 11.1: Number of bay Striped Bass collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$10-10.99$	5	1	1	4
$11-11.99$	5	6	6	0
$12-12.99$	5	8	8	0
$13-13.99$	5	3	3	2
$14-14.99$	5	5	5	0
$15-15.99$	5	2	2	3
$16-16.99$	5	3	3	2
$17-17.99$	5	3	3	2
$18-18.99$	10	23	12	0
$19-19.99$	19	49	28	0
$20-20.99$	24	59	28	0
$21-21.99$	26	42	30	0
$22-22.99$	25	41	27	0
$23-23.99$	26	38	28	0
$24-24.99$	25	43	32	0
$25-25.99$	22	31	24	0
$26-26.99$	22	31	25	0
$27-27.99$	20	28	20	0
$28-28.99$	17	26	19	0
$29-29.99$	15	24	18	0
$30-30.99$	13	23	15	0
$31-31.99$	14	33	15	0
$32-32.99$	19	25	22	0
$33-33.99$	17	21	18	0
$34-34.99$	17	14	14	3
$35-35.99$	18	22	21	0
$36-36.99$	20	19	19	1
$37-37.99$	21	17	17	4
$38-38.99$	13	19	17	0
$39-39.99$	9	14	14	0
$40-40.99$	9	13	12	0
$41-41.99$	7	14	14	0
$42-42.99$	8	13	13	0
$43-43.99$	8	10	10	0
$44-44.99$	8	13	13	0
$45-45.99$	7	11	10	0
$46-46.99$	8	7	7	1
$47-47.99$	5	4	4	1
$48-48.99$	5	6	6	0
$49-49.99$	5	4	4	1
$50-50.99$	5	1	1	4
$51-51.99$	5	0	0	5
$52-52.99$	5	0	0	5
$53-53.99$	5	0	0	5
$54-54.99$	5	0	0	5
$55-55.99$	5	1	1	4
$56-56.99$	5	0	0	5
Totals	557	770	589	57
$2-1$				

(Go back to text)

Table 11.2: Number of ocean Striped Bass collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$28-28.99$	5	3	3	2
$29-29.99$	5	1	1	4
$30-30.99$	7	3	3	4
$31-31.99$	7	6	6	1
$32-32.99$	12	9	9	3
$33-33.99$	20	18	18	2
$34-34.99$	27	19	19	8
$35-35.99$	45	20	20	25
$36-36.99$	55	39	39	16
$37-37.99$	63	33	33	30
$38-38.99$	52	41	41	11
$39-39.99$	37	32	32	5
$40-40.99$	31	34	32	0
$41-41.99$	28	32	28	0
$42-42.99$	17	18	17	0
$43-43.99$	14	13	13	1
$44-44.99$	15	12	12	3
$45-45.99$	11	1	1	10
$46-46.99$	7	7	7	0
$47-47.99$	7	3	3	4
$48-48.99$	5	2	2	3
$49-49.99$	5	1	1	4
$50-50.99$	5	2	2	3
$51-51.99$	5	0	0	5
$52-52.99$	5	0	0	5
$53-53.99$	5	1	1	4
$54-54.99$	5	0	0	5
Totals	500	350	343	158

(Go back to text)

Table 11.4: The number of Striped Bass assigned to each total length-at-age category for 342 fish sampled for scale age determination in Virginia waters of Atlantic Ocean during 2019.

（эхәч оя чヤeq оп）																		
0	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	66．8¢－E¢
$\mathrm{q}^{\circ} 0$	0	$\mathrm{g}^{\circ} 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	66．09－09
0	0	0	0	0	0	I	0	0	0	0	0	0	0	0	0	0	0	66．67－6币
0	0	$\mathrm{q}^{\circ} 0$	${ }^{9} 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	66：8t－8t
0	0	0	¢8．0	\＆\＆＊0	0	0	0	0	880	0	0	0	0	0	0	0	0	$66 \angle 5-\angle D$
0	0	0	¢！${ }^{\text {¢ }} 0$	$67^{\circ} 0$	67．0	0	67．0	0	0	0	0	0	0	0	0	0	0	66．9才－9币
0	0	0	0	0	I	0	0	0	0	0	0	0	0	0	0	0	0	66 ¢t－9t
0	0	0	0	$80^{\circ} 0$	0	$25^{\circ} 0$	$2 L^{\circ} 0$	$¢^{\circ} 0$	$80^{\circ} 0$	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	88.0	¢\％＇0	$80^{\circ} 0$	$9 \mathrm{c}^{\circ} 0$	$80^{\circ} 0$	0	$80^{\circ} 0$	0	0	0	0	0	66－¢t－8t
0	0	0	0	0	0	$90^{\circ} 0$	90．0	ャで0	ャで0	2I．0	ゅで0	$90^{\circ} 0$	0	0	0	0	0	66゙マワ－てヵ
0	0	0	0	0	0：0	Lİ0	ゅ．${ }^{\text {co }}$	Ľ\％0	LZ．0	200	LZ＇0	0	0	0	0	0	0	
0	0	0	0	$90^{\circ} 0$	800	$90^{\circ} 0$	0	$80^{\circ} 0$	27\％	$65^{\circ} 0$	61．0	90＊0	$60^{\circ} 0$	$90^{\circ} 0$	0	0	0	66．0ヵ－0ヵ
0	0	0	0	0	0	0	$60^{\circ} 0$	$60^{\circ} 0$	800	2I．0	97.0	2L．0	$97^{\circ} 0$	¢0\％	0	0	0	66．68－68
0	0	0	0	0	200	0	0	$20^{\circ} 0$	900	900	67．0	$9 \mathrm{c}^{\circ} 0$	21．0	27\％0	20.0	0	0	66－88－88
0	0	0	0	0	0	800	80\％ 0	90\％	800	800	$9 \mathrm{c}^{\circ} 0$	$60^{\circ} 0$	60°	ゅで0	Lz．0	80\％	0	66－28－28
0	0	0	0	0	¢0\％ 0	0	0	0	¢00	0	8．0	900	Ľ＇0	980	$85^{\circ} 0$	80\％	0	66．98－98
0	0	0	0	0	0	0	0	0	0	900	900	900	${ }_{\text {¢ }}{ }^{\circ} 0$	7\％ 0	$\mathrm{q}^{\circ} 0$	0	0	66－98－98
0	0	0	0	0	0	0	0	0	0	0	0	0	［1．0	$28^{\circ} 0$	$\mathrm{Ec}^{\circ} 0$	0	0	66．$¢ ¢-$－¢
0	0	0	0	0	0	0	0	0	0	0	0	0	$90^{\circ} 0$	$87^{\circ} 0$	29．0	0	0	66－8¢－$¢ 8$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Li．0	$68^{\circ} 0$	0	0	66． $\mathrm{z} \mathrm{\varepsilon}$－ $\mathrm{z} \mathrm{\varepsilon}$
0	0	0	0	0	0	0	$2 L^{\circ} \mathrm{O}$	0	0	0	0	0	0	0	¢8．0	0	0	66． I －－ E ¢
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	29.0	88°	0	66．0¢－08
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I	0	66．6z－6z
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9.0	0	9.0	66．8z－8z
92	†2	\＆	12	6 L	8I	2 I	91	¢I	†I	\＆1	21	LI	01	6	8	2	¢	［елıәдиІ

CHAPTER 12

SUMMER FLOUNDER Paralichthys dentatus

12.1 INTRODUCTION

We aged a total of 896 Summer Flounder (excluding 2 fish with otolith-ages only), using their scales collected by the VMRC's Biological Sampling Program in 2019. Of 896 aged fish, 333 and 563 fish were collected in Chesapeake Bay (bay fish) and Virginia waters of the Atlantic Ocean (ocean fish), respectively. The average bay fish age was 2.9 years with a standard deviation of 1.2 and a standard error of 0.07 . Seven age classes (1 to 7) were represented in the bay fish, comprising fish from the 2012 to 2018 year classes. The bay fish sample in 2019 was dominated by the year classes of 2016 and 2017 with 33% and 41%, respectively. The average ocean fish age was 4.9 years with a standard deviation of 2.2 and a standard error of 0.09 . Twelve age classes (1 to 12) were represented in the ocean fish, comprising fish from the 2007 to 2018 year classes. The ocean fish sample in 2019 was dominated by the year classes of $2013,2014,2015$, and 2016 with $18 \%, 19 \%$, 16%, and 14%, respectively. We also aged a total of 313 fish using their otoliths in addition to ageing their scales. The otolith ages were compared to the scale ages to examine how close both ages were to one another (see details in Results).

12.2 METHODS

12.2.1 Sample size for ageing

We estimated sample sizes for ageing Summer Flounder collected in both Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019, respectively, using a twostage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{12.1}
\end{equation*}
$$

where A is the sample size for ageing Summer Flounder in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Summer Flounder used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Summer Flounder collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (12.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% \mathrm{CV}$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

12.2.2 Handling of collection

Sagittal otoliths (hereafter, referred to as "otoliths") and scales were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted based on date of capture, their envelope labels were verified against VMRC's collection data, and each fish assigned a unique Age and Growth Laboratory identification number. All otoliths and scales were stored dry within their original labeled coin envelopes; otoliths were contained inside protective Axygen 2.0 ml microtubes.

12.2.3 Preparation

Scales

Summer Flounder scales were prepared for age and growth analysis by making ac-
etate impressions of the scale microstructure. Due to extreme variation in the size and shape of scales from individual fish, we selected only those scales that had even margins and which were of uniform size. We selected a range of four to six preferred scales (based on overall scale size) from each fish, making sure that only nonregenerated scales were used. Scale impressions were made on extruded clear acetate sheets ($25 \mathrm{~mm} \times 75 \mathrm{~mm}$) with a Carver Laboratory Heated Press (model "C"). The scales were pressed with the following settings:

Pressure: 15000 psi
Temperature: $77^{\circ} \mathrm{C}\left(170{ }^{\circ} \mathrm{F}\right)$
Time: 5 to 10 min
Summer Flounder scales that were the size of a quarter (coin) or larger, were pressed individually for up to twenty minutes. After pressing, the impressions were viewed with a Bell and Howell microfiche reader and checked again for regeneration and incomplete margins. Impressions that were too light, or when all scales were regenerated a new impression was made using different scales from the same fish.

Click here to obtain the protocol at the CQFE website on how to prepare scale impression for ageing Summer Flounder.

Otoliths

We used our thin-section and bake technique to process Summer Flounder sagittal otoliths (hereafter, referred to as "otoliths") for age determination. Otolith preparation began by randomly selecting either the right or left otolith. Each whole otolith was placed in a ceramic "Coors" spot plate well and baked in a Thermolyne 1400 furnace at $400{ }^{\circ} \mathrm{C}$. Baking time was dependent on the otolith's size and gauged by color, with a light caramel color desired. Once a suitable color was achieved the
baked otolith was embedded in epoxy resin with its distal surface orientated downwards and allowed to harden overnight. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The otolith was positioned so the blades straddled each side of the otolith focus. It was crucial that this cut be perpendicular to the long axis of the otolith. Failure to do so resulted in broadening and distorted winter growth zones. A proper cut resulted in annuli that were clearly defined and delineated. Once cut, thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thinsection.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Summer Flounder.

12.2.4 Readings

The CQFE system assigns an age class to a fish based on a combination of reading the information contained in its otolith, the date of its capture, and the species-specific period when it deposits its annulus. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called annuli. Technically, an otolith annulus is
the combination of both the opaque and the translucent bands. In practice, only the opaque bands are counted as annuli. The number of these visible dark bands replaces " x " in our notation below, and is the initial "age" assignment of the fish.

Second, the otolith section is examined for translucent growth. If no translucent growth is visible beyond the last dark annulus, the otolith is called "even" and no modification of the assigned age is made. The initial assigned age, then, is the age class of the fish. Any growth beyond the last annulus can be interpreted as either being toward the next age class or within the same age class. If translucent growth is visible beyond the last dark annulus, a " + " is added to the notation.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the dark band of the annulus. If the fish is captured after the end of the species-specific annulus deposition period and before January 1 , it is assigned an age class notation of " $\mathrm{x}+\mathrm{x}$ ", where " x " is the number of dark bands in the otolith. If the fish is captured between January 1 and the end of the species-specific annulus deposition period, it is assigned an age class notation of " $\mathrm{x}+(\mathrm{x}+1)$ ". Thus, any growth beyond the last annulus, after its "birthday", but before the dark band deposition period, is interpreted as being toward the next age class.

For example, Summer Flounder otolith deposition occurs between January and April (Bolz 1999). A Summer Flounder captured between January 1 and April 30, before the end of the species' annulus formation period, with three visible annuli and some translucent growth after the last annulus, would be assigned an age class of "x+(x+1)" or $3+(3+1)$, noted as $3+4$. This is the same age-class assigned to a
fish with four visible annuli captured after the end of June 30, the period of annulus formation, which would be noted as $4+4$.

Summer Flounder scales are also considered to have a deposition between January and June (Bolz 1999 and modified by CQFE/ODU), and age class assignment using these hard-parts is conducted in the same way as otoliths.

In 2019 the new notation method recommended by ASMFC was not used to assign ages on Summer Flounder for two reasons:

1. Growth widths among annuli on Summer Flounder scales don't grow uniformly unlike on Summer Flounder otoliths, therefore, it is not practical to use the margin codes on the scales;
2. Although the margin codes can be applied to Summer Flounder otoliths, it is more reasonable that the same ageing notation is used on both scales and otoliths versus using two different ageing notations on scales and otoliths, separately, keeping a consistent ageing notation between two hard-parts of the same species.

All Summer Flounder samples (scale pressings and sectioned otoliths) were aged by two different readers in chronological order based on collection date, without knowledge of previously estimated ages or the specimen lengths. When the readers' ages agreed, that age was assigned to the fish. When the two readers disagreed, both readers sat down together and re-aged the fish again without any knowledge of previously estimated ages or lengths, then assigned a final age to the fish. When the age readers were unable to agree on a final age, the fish was excluded from further analysis.

Scales

We determined fish age by viewing acetate impressions of scales (Figure 12.1) with a standard Bell and Howell R-735 microfiche reader equipped with 20 and 29 mm lenses. Annuli on Summer Flounder scales are identified based on two scale microstructure features, "crossing over" and circuli disruption. Primarily, "crossing over" in the lateral margins near the posterior/anterior interface of the scale is used to determine the origin of the annulus. Here compressed circuli (annulus) "cross-over" the previously deposited circuli of the previous year's growth. Typically annuli of the first three years can be observed transversing this interface as dark bands. These bands remain consistent throughout the posterior field and rejoin the posterior/anterior interface on the opposite side of the focus. Annuli can also be observed in the anterior lateral field of the scale. Here the annuli typically reveal a pattern of discontinuous and suddenly breaking segmented circuli. This event can also be distinguished by the presence of concentric white lines, which are typically associated with the disruption of circuli.

Annuli can also be observed bisecting the perpendicular plain of the radial striations in the anterior field of the scale. Radii emanate out from the focus of the scale towards the outer corner margins of the anterior field. These radial striations consist mainly of segmented concave circuli. The point of intersection between radii and annuli results in a "straightening out" of the concave circuli. This straightening of the circuli should be consistent throughout the entire anterior field of the scale. This event is further amplified by the presence of concave circuli neighboring both directly above and below the annulus. The first year's annulus can be difficult to locate on some scales. It is typically best identified in the lateral field of the anterior portion of the

Figure 12.1: Scale impression of a 1 year-old Summer Flounder
scale. The distance from the focus to the first year's annulus is typically larger with respect to the following annuli. For the annuli two through six, summer growth generally decreases proportionally. For ages greater than six, a crowding effect of the annuli near the outer margins of the scale is observed. This crowding effect creates difficulties in edge interpretation. At this point it is best to focus on the straightening of the circuli at the anterior margins of the scale.

When ageing young Summer Flounder, zero through age two, extreme caution must be taken as not to over age the structure. In young fish there is no point of reference to aid in the determination of the first year; this invariably results in over examination of the scale and such events as hatching or saltwater incursion marks (checks) may be interpreted as the first year.

Otoliths

All thin-sections were aged by two different readers using a Nikon SMZ1000 stereo microscope under transmitted light and darkfield polarization at between 8 and 20 times magnification (Figure 12.2). Each reader aged all of the otolith samples. By conven-

Figure 12.2: Otolith thin-section of a 4 yearold Summer Flounder with the last annulus on the edge of the thin-section
tion an annulus is identified as the narrow opaque zone, or winter growth. Typically the first year's annulus can be determined by first locating the focus of the otolith. The focus is generally located, depending on preparation, in the center of the otolith, and is visually well defined as a dark oblong region. The first year's annulus can be located directly below the focus, along the outer ridge of the sulcal groove on the ventral and dorsal sides of the otolith. This insertion point along the sulcal ridge resembles a check mark (not to be confused with a false annulus). Here the annulus can be followed outwards along the ventral and dorsal surfaces where it encircles the focus. Subsequent annuli also emanate from the sulcal ridge; however, they do not encircle the focus, but rather travel outwards to the distal surface of the otolith. To be considered a true annulus, each annulus must be rooted in the sulcus and travel without interruption to the distal surface of the otolith. The annuli in Summer Flounder have a tendency to split as they advance towards the distal surface. As a result, it is critical that reading path proceed in a direction down the sulcal ridge and outwards to the distal surface.

Click here to obtain the protocol at the CQFE website on how to age Summer Flounder using their otolith thinsections.

12.2.5 Comparison Tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, for following comparisons: 1) between the two readers in the current year; 2) within each reader in the current year; 3) timeseries bias between the current and previous years within each reader; and 4) between scale and otoliths ages. The readings from the entire sample for the current year were used to examine the difference between two readers. A random sub-sample of 50 fish from the current year was selected for second readings to examine the difference within a reader. Fifty otoliths randomly selected from the fish aged in 2000 were used to examine the time-series bias within each reader. A figure of $1: 1$ equivalence was used to illustrate those differences (Campana et al. 1995). All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

12.3 RESULTS

12.3.1 Sample size

We estimated a sample size of 371 bay Summer Flounder in 2019, ranging in length intervals from 8 to 28 inches (Table 12.1). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 8% for Age 2 to the largest $C V$ of 19% for Age 6 of the bay fish. We randomly selected and aged 335 fish (including 2 fish with otoliths only) from 423 Summer Flounder collected by VMRC in Chesapeake Bay in 2019. We fell short in our over-all collections for this optimal length-class sampling estimate by 44 fish.

We were short only a few fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

We estimated a sample size of 462 ocean Summer Flounder in 2019, ranging in length intervals from 13 to 32 inches (Table 12.2). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 9% for Age 4 to the largest $C V$ of 21% for Age 8 of the ocean fish. We randomly selected and aged 563 fish from 641 Summer Flounder collected by VMRC in Virginia waters of the Atlantic Ocean in 2019. We fell short in our over-all collections for this optimal lengthclass sampling estimate by 28 fish. We were short only a few fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

12.3.2 Scales

Both readers had moderate self-precision. Specifically, there was no significant difference between the first and second readings for Reader 1 with an agreement of 64% (1 year or less agreement of 96%) and a $C V$ of 5.43% (test of symmetry: $\chi^{2}=11.8, d f$ $=8, P=0.1604$), and there was no significant difference between the first and second readings for Reader 2 with an agreement of 66% (1 year or less agreement of 100%) and a $C V$ of 5.14% (test of symmetry: $\chi^{2}=$ $10.33, d f=8, P=0.2424)$. There was evidence of systematic disagreement between Reader 1 and Reader 2 with an agreement of 71% (1 year or less agreement of 94%) and a $C V$ of 5.78% (test of symmetry: χ^{2} $=48.79, d f=26, P=0.0044$) (Figure 12.3).

There was no time-series bias for either reader. Reader 1 had an agreement of 78% (1 year or less agreement of 98%) with ages

Figure 12.3: Between-reader comparison of scale age estimates for Summer Flounder collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.
of fish aged in 2000 with a $C V$ of 4.42% (test of symmetry: $\chi^{2}=5, d f=6, P=$ 0.5438), and Reader 2 had an agreement of 86% (1 year or less agreement of 100%) with a $C V$ of 2.68% (test of symmetry: χ^{2} $=4, d f=4, P=0.406)$.

Of the 333 bay Summer Flounder aged with scales, 7 age classes (1 to 7) were represented (Table 12.3). The average age for the sample was 2.9 years. The standard deviation and standard error were 1.2 and 0.07 , respectively. Year-class data (Figure 12.4) indicates that recruitment into the fishery in Chesapeake Bay begins at age 1, which corresponds to the 2018 yearclass for Summer Flounder caught in 2019. Summer Flounder in the sample in 2019 was dominated by the year classes of 2016 and 2017 with 33% and 41%, respectively. There was no male bay fish collected in 2019.

Of the 563 ocean Summer Flounder aged with scales, 12 age classes (1 to 12) were represented (Table 12.4). The average age for the sample was 4.9 years. The standard deviation and standard error were 2.2 and 0.09 , respectively. Year-class data (Figure 12.5) indicates that recruitment into the fishery in Virginia waters of Atlantic ocean begins at age 1, which corresponds

Figure 12.4: Year-class frequency distribution for Summer Flounder collected in Chesapeake Bay, Virginia for ageing in 2019. Distribution is broken down by sex and estimated using scale ages. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.
to the 2018 year-class for Summer Flounder caught in 2019. Summer Flounder in the sample in 2019 was dominated by the year classes of 2013, 2014, 2015, and 2016 with $18 \%, 19 \%, 16 \%$, and 14%, respectively. The sex ratio of male to female was 1:1.84 for the ocean fish.

Figure 12.5: Year-class frequency distribution for Summer Flounder collected in Virginia waters of the Atlantic Ocean for ageing in 2019. Distribution is broken down by sex and estimated using scale ages. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

12.3.3 Otoliths

Both readers had high self-precision. Specifically, there was no significant difference between the first and second readings for Reader 1 with an agreement of 90% and a $C V$ of 1.14% (test of symmetry: $\chi^{2}=$ 2.33, $d f=3, P=0.5062$), and there was no significant difference between the first and second readings for Reader 2 with an agreement of 94% and a $C V$ of 0.65% (test of symmetry: $\chi^{2}=3, d f=2, P=0.2231$). There was no evidence of systematic disagreement between Reader 1 and Reader 2 with an agreement of 93% (1 year or less agreement of 100%) and a $C V$ of 0.91% (test of symmetry: $\chi^{2}=7.48, d f=8, P$ $=0.4862$) (Figure 12.6).

Figure 12.6: Between-reader comparison of otolith age estimates for Summer Flounder collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

There was no time-series bias for either reader. Reader 1 had an agreement of 90% with ages of fish aged in 2003 with a $C V$ of 3.17% (test of symmetry: $\chi^{2}=5, d f=4, P$ $=0.2873$), and Reader 2 had an agreement of 100%.

Of the 313 Summer Flounder aged with otoliths, 12 age classes (1 to 11 , and 13) were represented (Table 12.5). The average age for the sample was 4.5 years. The standard deviation and standard error were 2.4 and 0.14 , respectively.

12.3.4 Comparison of scale and otolith ages

We aged 311 Summer Flounder using scales and otoliths (excluding 2 fish with otolithages only). There was evidence of systematic disagreement between otolith and scale ages (test of symmetry: $\chi^{2}=40.98, d f=$ $22, P=0.0083$) with an average $C V$ of 7.72%. There was an agreement of 62% between scale and otoliths ages whereas scales were assigned a lower and higher age than otoliths for 24% and 13% of the fish, respectively (Figure 12.7). There was also evidence of bias between otolith and scale ages using an age bias plot(Figure 12.8), with scale generally assigned higher ages for younger fish and lower ages for older fish than otolith age estimates.

Figure 12.7: Comparison of paired scale and otolith age estimates for Summer Flounder collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

12.3.5 Age-Length-Key (ALK)

We developed an age-length-key for both bay (Table 12.6) and ocean fish (Table 12.7) using scale ages, separately. The ALK can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using scale ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Figure 12.8: Age-bias plot for Summer Flounder scale and otolith age estimates in 2019.

12.4 RECOMMENDATIONS

Atlantic States Marine Fisheries Commission held a QAQC ageing workshop in St. Petersburg, Florida, in March of 2019 (ASMFC 2019). The workshop recommended that Summer Flounder should be aged using otoliths, not scales, when possible.

Table 12.1: Number of bay Summer Flounder collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$8-8.99$	5	0	0	5
$12-12.99$	5	0	0	5
$13-13.99$	5	1	1	4
$14-14.99$	71	87	72	0
$15-15.99$	55	72	56	0
$16-16.99$	44	60	45	0
$17-17.99$	39	56	40	0
$18-18.99$	33	47	35	0
$19-19.99$	28	37	28	0
$20-20.99$	26	29	27	0
$21-21.99$	18	22	19	0
$22-22.99$	10	7	7	3
$23-23.99$	7	3	3	4
$24-24.99$	5	1	1	4
$25-25.99$	5	1	1	4
$26-26.99$	5	0	0	5
$27-27.99$	5	0	0	5
$28-28.99$	5	0	0	5
Totals	371	423	335	44

(Go back to text)

Table 12.2: Number of ocean Summer Flounder collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.
(Go back to text)

Table 12.3: The number of Summer Flounder assigned to each total length-at-age category for 333 fish sampled for scale age determination in Chesapeake Bay, Virginia during 2019.

	Age							
Interval	1	2	3	4	5	6	7	Totals
$13-13.99$	1	0	0	0	0	0	0	1
$14-14.99$	11	52	9	0	0	0	0	72
$15-15.99$	2	46	8	0	0	0	0	56
$16-16.99$	1	22	16	4	1	0	0	44
$17-17.99$	0	9	29	2	0	0	0	40
$18-18.99$	0	4	18	12	1	0	0	35
$19-19.99$	0	1	18	6	3	0	0	28
$20-20.99$	0	1	11	5	8	1	0	26
$21-21.99$	0	0	2	6	7	4	0	19
$22-22.99$	0	0	0	2	2	1	2	7
$23-23.99$	0	0	0	0	0	2	1	3
$24-24.99$	0	0	0	0	0	1	0	1
$25-25.99$	0	0	0	0	1	0	0	1
Totals	15	135	111	37	23	9	3	333

(Go back to text)

Table 12.4: The number of Summer Flounder assigned to each total length-at-age category for 563 fish sampled for scale age determination in Virginia waters of Atlantic ocean during 2019.

	Age												
Interval	1	2	3	4	5	6	7	8	9	10	11	12	Totals
$13-13.99$	1	1	0	0	0	0	0	0	0	0	0	0	2
$14-14.99$	1	10	19	3	1	0	0	0	0	0	0	0	34
$15-15.99$	0	10	17	15	5	1	0	0	0	0	0	0	48
$16-16.99$	3	12	15	14	13	9	1	1	0	0	0	0	68
$17-17.99$	2	7	12	19	17	5	4	1	0	0	0	0	67
$18-18.99$	7	2	6	9	14	19	4	3	0	0	0	0	64
$19-19.99$	4	7	9	6	7	9	2	2	0	0	0	0	46
$20-20.99$	4	5	1	5	7	5	2	0	0	0	0	1	30
$21-21.99$	1	3	0	8	8	6	1	1	0	0	0	1	29
$22-22.99$	0	1	1	2	14	11	1	0	0	0	0	0	30
$23-23.99$	0	1	1	3	7	11	3	0	1	0	0	0	27
$24-24.99$	0	0	0	4	5	8	3	7	0	0	1	0	28
$25-25.99$	0	0	0	0	4	7	6	4	1	0	0	0	22
$26-26.99$	0	0	0	0	3	4	5	3	6	1	1	0	23
$27-27.99$	0	0	0	0	2	3	6	1	3	2	1	0	18
$28-28.99$	0	0	0	0	0	2	1	3	2	4	1	1	14
$29-29.99$	0	0	0	0	0	0	1	0	3	1	0	1	6
$30-30.99$	0	0	0	0	0	0	1	0	2	2	0	0	5
$31-31.99$	0	0	0	0	0	0	0	1	0	0	1	0	2
Totals	23	59	81	88	107	100	41	27	18	10	5	4	563

(Go back to text)

Table 12.5: The number of Summer Flounder assigned to each total length-at-age category for 313 fish sampled for otolith age determination in Chesapeake Bay and Virginia waters of Atlantic Ocean during 2019.

	Age																
Interval	1	2	3	4	5	6	7	8	9	10	11	13	Totals				
$13-13.99$	2	1	0	0	0	0	0	0	0	0	0	0	3				
$14-14.99$	3	8	5	0	1	0	0	0	0	0	0	0	17				
$15-15.99$	0	9	6	7	5	0	1	0	0	0	0	0	28				
$16-16.99$	2	9	4	2	5	8	1	0	1	0	0	0	32				
$17-17.99$	2	11	11	1	8	4	1	1	0	0	0	0	39				
$18-18.99$	7	3	8	4	3	8	3	2	1	2	0	0	41				
$19-19.99$	7	4	6	4	1	3	2	1	0	0	0	0	28				
$20-20.99$	2	8	5	1	3	3	0	0	0	0	0	0	22				
$21-21.99$	0	5	4	2	5	4	2	0	0	0	0	0	22				
$22-22.99$	0	1	0	2	8	3	2	1	0	0	0	0	17				
$23-23.99$	0	2	0	1	1	4	4	0	0	0	0	0	12				
$24-24.99$	0	0	0	1	1	2	5	1	0	1	0	0	11				
$25-25.99$	0	0	0	0	3	2	2	2	2	0	0	0	11				
$26-26.99$	0	0	0	0	1	2	1	2	4	1	0	0	11				
$27-27.99$	0	0	0	0	0	2	4	0	1	1	0	1	9				
$28-28.99$	0	0	0	0	0	0	0	3	3	0	1	0	7				
$29-29.99$	0	0	0	0	0	0	0	0	0	0	1	0	1				
$30-30.99$	0	0	0	0	0	0	0	0	1	1	0	0	2				
Totals	25	61	49	25	45	45	28	13	13	6	2	1	313				

(Go back to text)

Table 12.6: Age-Length key, as proportion-at-age in each 1-inch length interval, based on scale ages for Summer Flounder sampled in Chesapeake Bay, Virginia during 2019.

	Age							
Interval	1	2	3	4	5	6	7	
$13-13.99$	1	0	0	0	0	0	0	
$14-14.99$	0.15	0.72	0.12	0	0	0	0	
$15-15.99$	0.04	0.82	0.14	0	0	0	0	
$16-16.99$	0.02	0.5	0.36	0.09	0.02	0	0	
$17-17.99$	0	0.22	0.72	0.05	0	0	0	
$18-18.99$	0	0.11	0.51	0.34	0.03	0	0	
$19-19.99$	0	0.04	0.64	0.21	0.11	0	0	
$20-20.99$	0	0.04	0.42	0.19	0.31	0.04	0	
$21-21.99$	0	0	0.11	0.32	0.37	0.21	0	
$22-22.99$	0	0	0	0.29	0.29	0.14	0.29	
$23-23.99$	0	0	0	0	0	0.67	0.33	
$24-24.99$	0	0	0	0	0	1	0	
$25-25.99$	0	0	0	0	1	0	0	

(Go back to text)

Table 12.7: Age-Length key, as proportion-at-age in each 1-inch length interval, based on scale ages for Summer Flounder sampled in Virginia waters of the Atlantic Ocean during 2019.

| | | | | Age | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Interval | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| $13-13.99$ | 0.5 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $14-14.99$ | 0.03 | 0.29 | 0.56 | 0.09 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $15-15.99$ | 0 | 0.21 | 0.35 | 0.31 | 0.1 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 |
| $16-16.99$ | 0.04 | 0.18 | 0.22 | 0.21 | 0.19 | 0.13 | 0.01 | 0.01 | 0 | 0 | 0 | 0 |
| $17-17.99$ | 0.03 | 0.1 | 0.18 | 0.28 | 0.25 | 0.07 | 0.06 | 0.01 | 0 | 0 | 0 | 0 |
| $18-18.99$ | 0.11 | 0.03 | 0.09 | 0.14 | 0.22 | 0.3 | 0.06 | 0.05 | 0 | 0 | 0 | 0 |
| $19-19.99$ | 0.09 | 0.15 | 0.2 | 0.13 | 0.15 | 0.2 | 0.04 | 0.04 | 0 | 0 | 0 | 0 |
| $20-20.99$ | 0.13 | 0.17 | 0.03 | 0.17 | 0.23 | 0.17 | 0.07 | 0 | 0 | 0 | 0 | 0.03 |
| $21-21.99$ | 0.03 | 0.1 | 0 | 0.28 | 0.28 | 0.21 | 0.03 | 0.03 | 0 | 0 | 0 | 0.03 |
| $22-22.99$ | 0 | 0.03 | 0.03 | 0.07 | 0.47 | 0.37 | 0.03 | 0 | 0 | 0 | 0 | 0 |
| $23-23.99$ | 0 | 0.04 | 0.04 | 0.11 | 0.26 | 0.41 | 0.11 | 0 | 0.04 | 0 | 0 | 0 |
| $24-24.99$ | 0 | 0 | 0 | 0.14 | 0.18 | 0.29 | 0.11 | 0.25 | 0 | 0 | 0.04 | 0 |
| $25-25.99$ | 0 | 0 | 0 | 0 | 0.18 | 0.32 | 0.27 | 0.18 | 0.05 | 0 | 0 | 0 |
| $26-26.99$ | 0 | 0 | 0 | 0 | 0.13 | 0.17 | 0.22 | 0.13 | 0.26 | 0.04 | 0.04 | 0 |
| $27-27.99$ | 0 | 0 | 0 | 0 | 0.11 | 0.17 | 0.33 | 0.06 | 0.17 | 0.11 | 0.06 | 0 |
| $28-28.99$ | 0 | 0 | 0 | 0 | 0 | 0.14 | 0.07 | 0.21 | 0.14 | 0.29 | 0.07 | 0.07 |
| $29-29.99$ | 0 | 0 | 0 | 0 | 0 | 0 | 0.17 | 0 | 0.5 | 0.17 | 0 | 0.17 |
| $30-30.99$ | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0.4 | 0.4 | 0 | 0 |
| $31-31.99$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 0 | 0.5 | 0 |

(Go back to text)

CHAPTER 13

TAUTOG Tautoga onitis

13.1 INTRODUCTION

We aged a total of 262 Tautog, using their opercula collected by the VMRC's Biological Sampling Program in 2019. Of 262 aged fish, 261 and 1 fish were collected in Chesapeake Bay (bay fish) and Virginia waters of the Atlantic Ocean (ocean fish), respectively. The average age for the bay fish was 5.6 years with a standard deviation of 1.8 and a standard error of 0.11 . Ten age classes (1 , and 3 to 11) were represented in the bay fish, comprising fish from the 2008 to 2016, and 2018 year classes. The bay fish sample in 2019 was dominated by the year classes of 2013, 2014, and 2015 with 16%, 24%, and 30%, respectively. There was one ocean fish in 2019 sample, it was Age 10 and from 2009 year class. We also aged a total of 261 fish using their otoliths in addition to ageing their opercula. The otolith ages were compared to the operculum ages to examine how close both ages were to one another (see details in Results).

13.2 METHODS

13.2.1 Sample size for ageing

We estimated sample sizes for ageing Tautog collected in both Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019, respectively, using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{13.1}
\end{equation*}
$$

where A is the sample size for ageing Tautog in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Tautog used by VMRC to
estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled age-length data of Tautog collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (13.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% \mathrm{CV}$ reduction for the most major age in catch by aging an additional 100 or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

13.2.2 Handling of collection

Sagittal otoliths (hereafter, referred to as "otoliths") and opercula were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted based on date of capture. Their envelope labels were verified against VMRC's collection data, and each fish assigned a unique Age and Growth Laboratory identification number. All otoliths and opercula were stored dry within their original labeled coin envelopes; otoliths were contained inside protective Axygen 2.0 ml microtubes.

13.2.3 Preparation

Opercula

Tautog opercula were boiled for several minutes to remove any attached skin and connective tissue. After boiling, opercula were inspected for damage. If there were no obvious flaws, the opercula was dried and then stored in a new, labeled envelope.

Click here to obtain the protocol at the CQFE website on how to prepare opercu-
lum for ageing Tautog.

Otoliths

We used our thin-section and bake technique to process Tautog sagittal otoliths (hereafter, referred to as "otoliths") for age determination. Otolith preparation began by randomly selecting either the right or left otolith. Each whole otolith was placed in a ceramic "Coors" spot plate well and baked in a Thermolyne 1400 furnace at $400^{\circ} \mathrm{C}$. Baking time was dependent on the otolith's size and gauged by color, with a light caramel color desired. Once a suitable color was achieved the baked otolith was embedded in epoxy resin with its distal surface orientated downwards and allowed to harden overnight. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a permanent marker across the epoxy resin surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). The otolith was positioned so the blades straddled each side of the otolith focus. It was crucial that this cut be perpendicular to the long axis of the otolith. Failure to do so resulted in broadening and distorted winter growth zones. A proper cut resulted in annuli that were clearly defined and delineated. Once cut, thin-sections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission through the thin-section.

Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Tautog.

13.2.4 Readings

The CQFE system assigns an age class to a fish based on a combination of reading the information contained in its otolith, the date of its capture, and the species-specific period when it deposits its annulus. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called annuli. Technically, an otolith annulus is the combination of both the opaque and the translucent bands. In practice, only the opaque bands are counted as annuli. The number of these visible dark bands replaces " x " in our notation below, and is the initial "age" assignment of the fish.

Second, the otolith section is examined for translucent growth. If no translucent growth is visible beyond the last dark annulus, the otolith is called "even" and no modification of the assigned age is made. The initial assigned age, then, is the age class of the fish. Any growth beyond the last annulus can be interpreted as either being toward the next age class or within the same age class. If translucent growth is visible beyond the last dark annulus, a " + " is added to the notation.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the dark band of the annulus. If the fish is captured after the end of the species-specific annulus deposition period and before January 1 , it is assigned an age class notation of " $\mathrm{x}+\mathrm{x}$ ", where " x " is the number of dark bands in the otolith. If the fish is captured between January 1 and the end of the species-specific annulus deposition period, it is assigned an age class notation of " $x+(x+1)$ ". Thus, any growth beyond the last annulus, after its "birthday", but
before the dark band deposition period, is interpreted as being toward the next age class.

For example, Tautog otolith deposition occurs between May and July (Hostetter and Munroe 1993). A Tautog captured between January 1 and July 31, before the end of the species' annulus formation period, with three visible annuli and some translucent growth after the last annulus, would be assigned an age class of " $\mathrm{x}+(\mathrm{x}+1)$ " or $3+(3+1)$, noted as $3+4$. This is the same age-class assigned to a fish with four visible annuli captured after the end of June 30 , the period of annulus formation, which would be noted as $4+4$.

Tautog opercula are also considered to have a deposition period of May through July (Hostetter and Munroe 1993), and age class assignment using these hard-parts is conducted in the same way as otoliths.

In 2019 the new notation method recommended by ASMFC was not used to assign ages on Tautog for two reasons:

1. Growth widths among annuli on Tautog opercula don't grow uniformly unlike on Tautog otoliths, therefore, it is not practical to use the margin codes on the opercula;
2. Although the margin codes can be applied to Summer Tautog otoliths, it is more reasonable that the same ageing notation is used on both opercula and otoliths versus using two different ageing notations on opercula and otoliths, separately, keeping a consistent ageing notation between two hard-parts of the same species.

Opercula

All opercula were aged in chronological order based on collection date, without knowledge of the specimen lengths, using a light table with no magnification (Figure
13.1).

Figure 13.1: Operculum of a 7 year-old Tautog

Otoliths

All thin-sections were aged in chronological order based on collection date, without knowledge of the specimen lengths, using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 13.2).

Figure 13.2: Otolith thin-section of 6 year-old Tautog

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing opercula and otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all Tautog samples (opercula and sectioned otoliths) were aged by one reader
only. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

13.2.5 Comparison Tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years; 3) between opercula and otoliths ages.. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2000 were used to examine the time-series bias within the reader. A figure of $1: 1$ equivalence was used to illustrate the difference between opercula and otoliths ages (Campana et al. 1995). All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

13.3 RESULTS

13.3.1 Sample size

We estimated a sample size of 412 bay Tautog in 2019, ranging in length intervals from 8 to 26 inches (Table 13.1). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 8% for Age 5 to the largest $C V$ of 20% for Age 3 of the bay fish. We aged all 261 Tautog collected by VMRC in Chesapeake Bay in 2019. We fell short in our over-all collections for this optimal lengthclass sampling estimate by 174 fish. We were short many fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would definitely
be influenced significantly. Therefore, precaution should be used when developing ALK using these age data.

We estimated a sample size of 388 ocean Tautog in 2019, ranging in length intervals from 11 to 30 inches (Table 13.2). This sample size provided a range in $C V$ for age composition approximately from the smallest $C V$ of 10% for Age 5 to the largest $C V$ of 24% for Age 15 of the ocean fish. Only one Tautog was collected and aged in Virginia waters of Atlantic ocean, therefore, no ALK was developed for the ocean fish collected in 2019.

13.3.2 Opercula

There was no significant difference between the first and second readings for the reader with an agreement of 86% (1 year or less agreement of 98%) and a $C V$ of 2.48% (test of symmetry: $\chi^{2}=7, d f=5, P=$ 0.2206).

There was no time-series bias for the reader. The reader had an agreement of 66% (1 year or less agreement of 92%) with ages of fish aged in 2000 with a $C V$ of 5.9% (test of symmetry: $\chi^{2}=7, d f=10, P=$ 0.7254).

Of the 261 bay Tautog aged with opercula, 10 age classes (1 , and 3 to 11) were represented (Table 13.3). The average age for the sample was 5.6 years. The standard deviation and standard error were 1.8 and 0.11 , respectively. Year-class data (Figure 13.3) indicates that recruitment into the fishery in Chesapeake Bay begins at age 1, which corresponds to the 2018 year-class for Tautog caught in 2019. Tautog in the sample in 2019 was dominated by the year classes of 2013,2014 , and 2015 with 16%, 24%, and 30%, respectively. The sex ratio of male to female was 1:0.89 for the bay fish.

There was only one ocean Tautog collected and aged in 2019 with a total length of 16.9

Figure 13.3: Year-class frequency distribution for Tautog collected in Chesapeake Bay, Virginia for ageing in 2019. Distribution is broken down by sex and estimated using operculum ages. 'Unknown' represents the fish gonads that were not available for examination or were not examined for sex during sampling.
inch and a operculum age of 10 .

13.3.3 Otoliths

There was no significant difference between the first and second readings for the reader with an agreement of 98% and a $C V$ of 0.4% (test of symmetry: $\chi^{2}=1, d f=1, P=$ 0.3173).

There was no time-series bias for the reader. The reader had an agreement of 88% with ages of fish aged in 2003 with a $C V$ of 1.31% (test of symmetry: $\chi^{2}=6, d f$ $=3, P=0.1116$).

Of the 261 Tautog aged with otoliths, 12 age classes (1 to 11 , and 14) were represented (Table 13.4). The average age for the sample was 5.6 years. The standard deviation and standard error were 1.9 and 0.12 , respectively.

13.3.4 Comparison of operculum and otolith ages

We aged 261 Tautog using both opercula and otoliths. There was no evidence of systematic disagreement between otolith and operculum ages (test of symmetry: $\chi^{2}=$
22.22, $d f=15, P=0.1023$) with an average $C V$ of 3.16%. There was an agreement of 77% between operculum and otoliths ages whereas opercula were assigned a lower and higher age than otoliths for 8% and 15% of the fish, respectively (Figure 13.4). There was also little evidence of bias between otolith and operculum ages using an age bias plot(Figure 13.5), with no trend of either over-ageing younger or under-ageing older fish.

Figure 13.4: Comparison of paired operculum and otolith age estimates for Tautog collected in Chesapeake Bay and Virginia waters of the Atlantic Ocean in 2019.

Figure 13.5: Age-bias plot for Tautog operculum and otolith age estimates in 2019.

13.3.5 Age-Length-Key (ALK)

We developed an age-length-key for the bay fish (Table 13.5) using operculum ages.

The ALK can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using operculum ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 13.1: Number of bay Tautog collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$8-8.99$	5	2	2	3
$9-9.99$	5	0	0	5
$10-10.99$	5	1	1	4
$11-11.99$	5	3	3	2
$12-12.99$	5	13	13	0
$13-13.99$	5	14	14	0
$14-14.99$	29	35	35	0
$15-15.99$	97	77	77	20
$16-16.99$	97	60	60	37
$17-17.99$	68	38	38	30
$18-18.99$	38	13	13	25
$19-19.99$	23	2	2	21
$20-20.99$	10	2	2	8
$21-21.99$	5	1	1	4
$22-22.99$	5	0	0	5
$24-24.99$	5	0	0	5
$26-26.99$	5	0	0	5
Totals	412	261	261	174

(Go back to text)

Table 13.2: Number of ocean Tautog collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019 , and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

Interval	Target	Collected	Aged	Need
$11-11.99$	5	0	0	5
$14-14.99$	5	0	0	5
$15-15.99$	38	0	0	38
$16-16.99$	60	1	1	59
$17-17.99$	38	0	0	38
$18-18.99$	28	0	0	28
$19-19.99$	30	0	0	30
$20-20.99$	28	0	0	28
$21-21.99$	28	0	0	28
$22-22.99$	22	0	0	22
$23-23.99$	24	0	0	24
$24-24.99$	19	0	0	19
$25-25.99$	17	0	0	17
$26-26.99$	11	0	0	11
$27-27.99$	17	0	0	17
$28-28.99$	8	0	0	8
$29-29.99$	5	0	0	5
$30-30.99$	5	0	0	5
Totals	388	1	1	387

(Go back to text)

Table 13.3: The number of Tautog assigned to each total length-at-age category for 261 fish sampled for operculum age determination in Chesapeake Bay, Virginia during 2019.

	Age													
Interval	1	3	4	5	6	7	8	9	10	11	Totals			
$8-8.99$	2	0	0	0	0	0	0	0	0	0	2			
$10-10.99$	1	0	0	0	0	0	0	0	0	0	1			
$11-11.99$	0	1	2	0	0	0	0	0	0	0	3			
$12-12.99$	0	2	11	0	0	0	0	0	0	0	13			
$13-13.99$	0	0	9	4	1	0	0	0	0	0	14			
$14-14.99$	0	2	18	9	3	2	1	0	0	0	35			
$15-15.99$	0	1	23	21	19	3	6	4	0	0	77			
$16-16.99$	0	0	12	21	11	6	6	2	2	0	60			
$17-17.99$	0	0	2	8	6	8	8	4	2	0	38			
$18-18.99$	0	0	1	0	2	4	3	1	1	1	13			
$19-19.99$	0	0	0	0	0	0	0	2	0	0	2			
$20-20.99$	0	0	0	0	0	0	1	0	1	0	2			
$21-21.99$	0	0	0	0	0	0	0	0	0	1	1			
Totals	3	6	78	63	42	23	25	13	6	2	261			

(Go back to text)

Table 13.4: The number of Tautog assigned to each total length-at-age category for 261 fish sampled for otolith age determination in Chesapeake Bay and Virginia waters of Atlantic Ocean during 2019.

	Age													
Interval	1	2	3	4	5	6	7	8	9	10	11	14	Totals	
$8-8.99$	2	0	0	0	0	0	0	0	0	0	0	0	2	
$10-10.99$	0	1	0	0	0	0	0	0	0	0	0	0	1	
$11-11.99$	0	0	1	2	0	0	0	0	0	0	0	0	3	
$12-12.99$	0	0	1	12	0	0	0	0	0	0	0	0	13	
$13-13.99$	0	0	0	9	3	1	0	0	0	0	0	0	13	
$14-14.99$	0	0	2	22	5	3	2	0	1	0	0	0	35	
$15-15.99$	0	0	1	25	25	15	1	8	1	1	0	0	77	
$16-16.99$	0	0	0	12	25	8	5	8	1	2	0	0	61	
$17-17.99$	0	0	0	2	6	10	5	12	1	2	0	0	38	
$18-18.99$	0	0	0	1	0	3	4	2	0	2	1	0	13	
$19-19.99$	0	0	0	0	0	0	0	0	1	1	0	0	2	
$20-20.99$	0	0	0	0	0	0	0	0	0	0	2	0	2	
$21-21.99$	0	0	0	0	0	0	0	0	0	0	0	1	1	
Totals	2	1	5	85	64	40	17	30	5	8	3	1	261	

(Go back to text)

Table 13.5: Age-Length key, as proportion-at-age in each 1-inch length interval, based on operculum ages for Tautog sampled in Chesapeake Bay, Virginia during 2019.

	Age																
Interval	1	3	4	5	6	7	8	9	10	11							
$8-8.99$	1	0	0	0	0	0	0	0	0	0							
$10-10.99$	1	0	0	0	0	0	0	0	0	0							
$11-11.99$	0	0.33	0.67	0	0	0	0	0	0	0							
$12-12.99$	0	0.15	0.85	0	0	0	0	0	0	0							
$13-13.99$	0	0	0.64	0.29	0.07	0	0	0	0	0							
$14-14.99$	0	0.06	0.51	0.26	0.09	0.06	0.03	0	0	0							
$15-15.99$	0	0.01	0.3	0.27	0.25	0.04	0.08	0.05	0	0							
$16-16.99$	0	0	0.2	0.35	0.18	0.1	0.1	0.03	0.03	0							
$17-17.99$	0	0	0.05	0.21	0.16	0.21	0.21	0.11	0.05	0							
$18-18.99$	0	0	0.08	0	0.15	0.31	0.23	0.08	0.08	0.08							
$19-19.99$	0	0	0	0	0	0	0	1	0	0							
$20-20.99$	0	0	0	0	0	0	0.5	0	0.5	0							
$21-21.99$	0	0	0	0	0	0	0	0	0	1							

(Go back to text)

CHAPTER 14

WEAKFISH Cynoscion regalis

14.1 INTRODUCTION

We aged a total of 268 Weakfish, Cynoscion regalis, collected by the VMRC's Biological Sampling Program for age and growth analysis in 2019. The Weakfish ages ranged from 0 to 4 years old with an average age of 2.2 , a standard deviation of 0.9 , and a standard error of 0.05 . Five age classes (0 to 4) were represented, comprising fish of the 2015 to 2019 year-classes. The sample was dominated by fish from the year-class of 2017 with 51.5%.

14.2 METHODS

14.2.1 Sample size for ageing

We estimated sample size for ageing Weakfish in 2019 using a two-stage random sampling method (Quinn and Deriso 1999) to increase precision in estimates of age composition from fish sampled efficiently and effectively. The basic equation is:

$$
\begin{equation*}
A=\frac{V_{a}}{\theta_{a}^{2} C V^{2}+B_{a} / L} \tag{14.1}
\end{equation*}
$$

where A is the sample size for ageing Weakfish in 2019; θ_{a} stands for the proportion of age a fish in a catch. V_{a} and B_{a} represent variance components within and between length intervals for age a, respectively; $C V$ is the coefficient of variation; L was the total number of Weakfish used by VMRC to estimate length distribution of the catches from 2013 to 2017. θ_{a}, V_{a}, B_{a}, and $C V$ were calculated using pooled agelength data of Weakfish collected from 2013 to 2017 and using equations in Quinn and Deriso (1999). For simplicity, the equations are not listed here. The equation (14.1) indicates that the more fish that are aged, the smaller the $C V$ (or higher precision) that will be obtained. Therefore, the criterion to age A (number) of fish is that A should be a number above which there is only a $1 \% C V$ reduction for the most major age in catch by aging an additional 100
or more fish. Finally, A_{l} is A multiplied by the proportion of length interval l from the length distribution of the fish aged in the lab between 2013 and 2017. A_{l} is number of fish to be aged for length interval l in 2019.

14.2.2 Handling of collections

Otoliths were received by the Age and Growth Laboratory in labeled coin envelopes, and were sorted by date of capture. Their envelope labels were verified against VMRC's collection data, and each fish was assigned a unique Age and Growth Laboratory identification number. All otoliths were stored dry in their original labeled coin envelopes.

14.2.3 Preparation

Sagittal otoliths, hereafter, referred to as "otoliths", were processed for age determination following the methods described in Lowerre-Barbieri et al. (1994) with a few modifications. The left or right otolith was randomly selected and attached, distal side down, to a glass slide with clear Crystalbond ${ }^{\text {TM }} 509$ adhesive. The otoliths were viewed by eye and, when necessary, under a stereo microscope to identify the location of the core, and the position of the core was marked using a pencil across the otolith surface. At least one transverse cross-section (hereafter, referred to as "thin-section") was then removed from the marked core of each otolith using a Buehler IsoMet ${ }^{\text {TM }}$ low-speed saw equipped with two, 3 -inch diameter, Norton diamond grinding wheels (hereafter, referred to as "blades"), separated by a stainless steel spacer of 0.5 mm (diameter $2.5^{\prime \prime}$). Thinsections were placed on labeled glass slides and covered with a thin layer of Flo-texx mounting medium that not only fixed the sections to the slide, but more importantly, provided enhanced contrast and greater readability by increasing light transmission
through the thin-sections.
Click here to obtain the protocol at the CQFE website on how to prepare otolith thin-section for ageing Weakfish.

14.2.4 Readings

The VMRC system assigns an age class to a fish based on a combination of number of annuli in a thin-section, the date of capture, and the species-specific period when the annulus is deposited. Each year, as the fish grows, its otoliths grow and leave behind markers of their age, called an annulus. Technically, an otolith annulus is the combination of both the opaque and the translucent band. In practice, only the opaque bands are counted as annuli and recorded in our ageing notation.

In 2019 a new notation method recommended by Atlantic States Marine Fisheries Commission (ASMFC) was used to assign age on Weakfish. In addition to recording the number of annulus, the margin or the growth width after the last annulus is coded from 1 to 4 . The margin code " 1 ", " 2 ", " 3 ", and " 4 " stands for no growth, the growth width less than or equal to one third of, larger than one third but less than or equal to two thirds of, and larger than two thirds of the growth width formed in the previous year, respectively.

By convention all fish in the Northern Hemisphere are assigned a birth date of January 1. In addition, each species has a specific period during which it deposits the annulus. If a fish is captured after the end of the species-specific annulus deposition period and before January 1, it is assigned an age class as the same as its annulus number without referencing its margin code. If a fish has a margin code of " 1 ", it is assigned an age class as the same as its annulus number no matter in which month it is captured. If a fish is captured after December 31 and before its annulus depo-
sition period, it is assigned an age class as its annulus number plus one when its margin code is " 2 ", " 3 ", or " 4 ". If a fish is captured during its annulus deposition period, it is assigned an age class as the same as its annulus number when its margin code is " 2 " and as its annulus number plus one when its margin code is " 3 " or " 4 " (Note: Based on the growth of Virginia species we use two criteria for Margin Code 2 to assign a fish an age class depending on its capture month, which could be different from how other states and agencies use Margin Code 2).

For example, Weakfish otolith annulus formation occurs between April and June (Lowerre-Barbieri et al. 1994 and modified by CQFE/ODU). A Weakfish with two visible annuli could be assigned an age of 2 or 3 depending on its capture month and margin code. When its margin code is " 1 ", it is Age 2 no matter when it is captured. When it is captured after June and before January, it is Age 2 no matter what its margin code is. When it is captured after December and before April and its margin code is not " 1 ", it is Age $3(2+1=3)$. When it is captured between April and June, it is Age 2 when its margin code is " 2 " but Age $3(2+1=3)$ when its margin code is " 3 " or "4".

After Virginia state office closures on March 15, 2020 due to the COVID-19 virus, one of two readers had to switch from ageing otoliths to sectioning otoliths because other technicians had no equipment to section otoliths at home. As a result, all thinsections were aged by only one reader using a Nikon SMZ1000 stereo microscope under transmitted light and dark-field polarization at between 8 and 20 times magnification (Figure 14.1). All samples were aged in chronological order without knowledge of the collection dates or lengths of specimen. Because there was one reader, the age estimated by the reader became the final age and was assigned to the fish.

Figure 14.1: Otolith thin-section of 4 year-old Weakfish

14.2.5 Comparison tests

A symmetry test (Hoenig et al. 1995) and coefficient of variation ($C V$) analysis were used to detect any systematic difference and precision on age readings, respectively, within the reader, for the following comparisons: 1) in the current year and 2) timeseries bias between the current and previous years. The readings from the entire sample for the current year were used to examine the difference and precision in the current. A random sub-sample of 50 fish from the current year was selected for second readings of the reader. Fifty otoliths randomly selected from the fish aged in 2003 were used to examine the time-series bias within the reader. All statistics analyses were performed in R 3.6.1 (R Core Team 2019).

14.3 RESULTS

14.3.1 Sample size

We estimated a sample size of 316 for ageing Weakfish in 2019, ranging in length intervals from 4 to 31 inches (Table 14.1). This sample size provided a range in $(C V)$ for age composition approximately from the smallest ($C V$) of 6% for Age 2 to the largest ($C V$) of 17% for Age 4. In 2019, we randomly selected and aged 268 fish from 346 Weakfish collected by VMRC. We fell short in our over-all collections for this optimal length-class sampling estimate by 56
fish. We were not short any fish from the major length intervals (the interval requires 10 or more fish), as a result, the precision for the estimates of major age groups would not be influenced significantly.

14.3.2 Reading precision

There was no significant difference between the first and second readings for Reader 1 with an agreement of 98% and a $C V$ of 0.94% (test of symmetry: $\chi^{2}=1, d f=1$, $P=0.3173)$.

There was no time series bias for the reader. The reader had an agreement of 98% with ages of fish aged in 2003 with a $C V$ of 0.19% (test of symmetry: $\chi^{2}=1, d f=1, P=$ $0.3173)$.

Figure 14.2: Year-class frequency distribution for Weakfish collected for ageing in 2019. Distribution is broken down by sex. 'Unknown' represents gonads that were not available for examination or were not examined for sex during sampling.

14.3.3 Year class

Of the 268 fish aged with otoliths, 5 age classes (0 to 4) were represented (Table 14.2). The average age was 2.2 years, and the standard deviation and standard error were 0.9 and 0.05 , respectively. Year-class data show that the fishery was comprised of 5 year-classes: fish from the 2015 to 2019 year-classes, with fish primarily from the year-class of 2017 with 51.5%. The ratio of
males to females was 1:3.65 in the sample collected (Figure 14.2).

14.3.4 Age-length-key (ALK)

We developed an age-length-key (Table 14.3) that can be used in the conversion of numbers-at-length in the estimated catch to numbers-at-age using otolith ages. The table is based on VMRC's stratified sampling of landings by total length inch intervals.

Table 14.1: Number of Weakfish collected and aged in each 1-inch length interval in 2019. 'Target' represents the sample size for ageing estimated for 2019, and 'Need' represents number of fish shorted in each length interval compared to the optimum sample size for ageing and number of fish aged.

	Interval	Target	Collected	Aged	Need
	$4-4.99$	5	1	1	4
$5-5.99$	5	0	0	5	
$6-6.99$	5	1	1	4	
$7-7.99$	5	6	6	0	
$8-8.99$	5	16	6	0	
$9-9.99$	29	37	30	0	
$10-10.99$	57	75	58	0	
$11-11.99$	40	49	40	0	
$12-12.99$	25	35	26	0	
$13-13.99$	19	37	20	0	
$14-14.99$	14	19	14	0	
$15-15.99$	15	17	16	0	
$16-16.99$	13	15	14	0	
$17-17.99$	8	9	8	0	
$18-18.99$	6	7	6	0	
$19-19.99$	5	4	4	1	
$20-20.99$	5	2	2	3	
$21-21.99$	5	2	2	3	
$22-22.99$	5	1	1	4	
$23-23.99$	5	2	2	3	
$24-24.99$	5	4	4	1	
$25-25.99$	5	5	5	0	
$26-26.99$	5	1	1	4	
$27-27.99$	5	0	0	5	
$28-28.99$	5	1	1	4	
$29-29.99$	5	0	0	5	
$30-30.99$	5	0	0	5	
$31-31.99$	5	0	0	5	
$T o t a l s$	316	346	268	56	

(Go back to text)

Table 14.2: The number of Weakfish assigned to each total length-at-age category for 268 fish sampled for otolith age determination in Virginia during 2019.

	Age					
Interval	0	1	2	3	4	Totals
$4-4.99$	1	0	0	0	0	1
$6-6.99$	1	0	0	0	0	1
$7-7.99$	0	6	0	0	0	6
$8-8.99$	0	5	1	0	0	6
$9-9.99$	0	13	17	0	0	30
$10-10.99$	0	21	37	0	0	58
$11-11.99$	0	8	30	2	0	40
$12-12.99$	0	0	25	1	0	26
$13-13.99$	0	0	16	3	1	20
$14-14.99$	0	0	5	6	3	14
$15-15.99$	0	0	4	10	2	16
$16-16.99$	0	2	1	8	3	14
$17-17.99$	0	0	0	5	3	8
$18-18.99$	0	0	1	3	2	6
$19-19.99$	0	0	1	2	1	4
$20-20.99$	0	0	0	2	0	2
$21-21.99$	0	0	0	1	1	2
$22-22.99$	0	0	0	1	0	1
$23-23.99$	0	0	0	0	2	2
$24-24.99$	0	0	0	0	4	4
$25-25.99$	0	0	0	1	4	5
$26-26.99$	0	0	0	0	1	1
$28-28.99$	0	0	0	0	1	1
Totals	2	55	138	45	28	268

(Go back to text)

Table 14.3: Age-Length key, as proportion-at-age in each 1-inch length interval, based on otolith ages for Weakfish sampled for age determination in Virginia during 2019.

	Age				
Interval	0	1	2	3	4
$4-4.99$	1	0	0	0	0
$6-6.99$	1	0	0	0	0
$7-7.99$	0	1	0	0	0
$8-8.99$	0	0.83	0.17	0	0
$9-9.99$	0	0.43	0.57	0	0
$10-10.99$	0	0.36	0.64	0	0
$11-11.99$	0	0.2	0.75	0.05	0
$12-12.99$	0	0	0.96	0.04	0
$13-13.99$	0	0	0.8	0.15	0.05
$14-14.99$	0	0	0.36	0.43	0.21
$15-15.99$	0	0	0.25	0.62	0.12
$16-16.99$	0	0.14	0.07	0.57	0.21
$17-17.99$	0	0	0	0.62	0.38
$18-18.99$	0	0	0.17	0.5	0.33
$19-19.99$	0	0	0.25	0.5	0.25
$20-20.99$	0	0	0	1	0
$21-21.99$	0	0	0	0.5	0.5
$22-22.99$	0	0	0	1	0
$23-23.99$	0	0	0	0	1
$24-24.99$	0	0	0	0	1
$25-25.99$	0	0	0	0.2	0.8
$26-26.99$	0	0	0	0	1
$28-28.99$	0	0	0	0	1

(Go back to text)

REFERENCES

ASMFC

2019. Report of the Quality Assurance/Quality Control Fish Ageing Workshop. Technical report, Atlantic States Marine Fisheries Commission, Washington DC, USA.

Ballenger, J. C.
2011. Population dynamics of sheepshead (Archosargus probatocephalus; Walbaum 1792) in the Chesapeake Bay region: A comparison to other areas and an assessment of their current status. Old Dominion University.

Barbieri, L. R., M. Chittenden Jr, and S. K. Lowerre-Barbieri
1994. Maturity, spawning, and ovarian cycle of Atlantic croaker, Micropogonias undulatus, in the Chesapeake Bay and adjacent coastal waters. Fishery Bulletin, 92(4):671-685.

Barbieri, L. R., M. E. Chittenden Jr, and C. M. Jones
1993. Age, growth, and mortality of Atlantic croaker, Micropogonias undulatus, in the Chesapeake Bay region, with a discussion of apparent geographic changes in population dynamics. Fishery Bulletin, 92(1).

Beckman, D. W., A. L. Stanley, J. H. Render, and C. A. Wilson
1990. Age and growth of black drum in Louisiana waters of the Gulf of Mexico. Transactions of the American Fisheries Society, 119(3):537-544.

Bobko, S. J.
1991. Age, growth, and reproduction of black drum, Pogonias Cromis, in Virginia. PhD thesis, Old Dominion University.

Bolz, G. R.
1999. Proceedings of the Summer Flounder Aging Workshop, 1-2 February 1999. Woods Hole, Massachusetts, USA.

Campana, S. E., M. C. Annand, and J. I. McMillan
1995. Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society, 124(1):131-138.

Hayse, J. W.
1987. Feeding habits, age, growth and reproduction of Atlantic spadefish, Chaetodipterus Faber(Pisces: Ephippidae), in South Carolina. Master's thesis, College of Charleston.

Hoenig, J., M. Morgan, and C. Brown
1995. Analysing differences between two age determination methods by tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences, 52(2):364-368.

Hostetter, E. B. and T. A. Munroe
1993. Age, growth, and reproduction of tautog Tautoga onitis (Labridae: Perciformes) from coastal waters of Virginia. Fishery Bulletin, 91(1).

Ihde, T. F. and M. E. Chittenden
2003. Validation of presumed annual marks on sectioned otoliths of spotted seatrout, Cynoscion nebulosus, in the Chesapeake Bay region. Bulletin of marine science, 72(1):7787.

Jones, C. M. and B. Wells
1998. Age, growth, and mortality of black drum, Pogonias cromis, in the Chesapeake Bay region. Fishery Bulletin, 96(3).

Liao, H., A. F. Sharov, C. M. Jones, and G. A. Nelson
2013. Quantifying the effects of aging bias in Atlantic striped bass stock assessment. Transactions of the American Fisheries Society, 142(1):193-207.

Lowerre-Barbieri, S. K., M. E. Chittenden Jr, and C. M. Jones
1994. A comparison of a validated otolith method to age weakfish, Cynoscion regalis, with the traditional scale method. Fishery Bulletin, 92(3).

Piner, K. R. and C. M. Jones
2004. Age, growth and the potential for growth overfishing of spot (Leiostomus xanthurus) from the Chesapeake Bay, eastern USA. Marine and Freshwater Research, 55(6):553-560.

Quinn, T. J. and R. B. Deriso
1999. Quantitative fish dynamics. Oxford University Press.

R Core Team
2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Richards, C.
1967. Age, growth and fecundity of the cobia, Rachycentron canadum, from Chesapeake Bay and adjacent mid-Atlantic waters. Transactions of the American Fisheries Society, 96(3):343-350.

Robillard, E., C. S. Reiss, and C. M. Jones
2009. Age-validation and growth of bluefish (Pomatomus saltatrix) along the East Coast of the United States. Fisheries Research, 95(1):65-75.

Ross, J. L., T. M. Stevens, and D. S. Vaughan
1995. Age, growth, mortality, and reproductive biology of red drums in North Carolina waters. Transactions of the American Fisheries Society, 124(1):37-54.

Schmidt, D. J., M. R. Collins, and D. M. Wyanski
1993. Age, growth, maturity, and spawning of Spanish mackerel, Scomberomorus maculatus (Mitchill), from the Atlantic coast of the southeastern United States. South Carolina State Documents Depository.

Secor, D. H., T. Trice, and H. Hornick
1995. Validation of otolith-based ageing and a comparison of otolith and scale-based ageing in mark-recaptured Chesapeake Bay striped bass, Morone saxatilis. Fishery Bulletin, 93(1):186-190.

